\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On inhomogeneous Strichartz estimates for fractional Schrödinger equations and their applications

Abstract Related Papers Cited by
  • In this paper we obtain some new inhomogeneous Strichartz estimates for the fractional Schrödinger equation in the radial case. Then we apply them to the well-posedness theory for the equation $i\partial_{t}u+|\nabla|^{\alpha}u=V(x,t)u$, $1<\alpha<2$, with radial $\dot{H}^\gamma$ initial data below $L^2$ and radial potentials $V\in L_t^rL_x^w$ under the scaling-critical range $\alpha/r+n/w=\alpha$.
    Mathematics Subject Classification: Primary: 35B45, 35A01; Secondary: 35Q40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Bergh and J. Löfström, Interpolation Spaces, An Introduction, Springer-Verlag, Berlin-New York, 1976.

    [2]

    T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys., 147 (1992), 75-100.doi: 10.1007/BF02099529.

    [3]

    Y. Cho and S. Lee, Strichartz estimates in spherical coordinates, Indiana Univ. Math. J., 62 (2013), 991-1020.doi: 10.1512/iumj.2013.62.4970.

    [4]

    M. Christ and A. Kiselev, Maximal functions associated to filtrations, J. Funct. Anal., 179 (2001), 409-425.doi: 10.1006/jfan.2000.3687.

    [5]

    E. Cordero and F. Nicola, Strichartz estimates in Wiener amalgam spaces for the Schrödinger equation, Math. Nachr., 281 (2008), 25-41.doi: 10.1002/mana.200610585.

    [6]

    E. Cordero and F. Nicola, Some new Strichartz estimates for the Schrödinger equation, J. Differential equations., 245 (2008), 1945-1974.doi: 10.1016/j.jde.2008.07.009.

    [7]

    P. D'Ancona, V. Pierfelice and N. Visciglia, Some remarks on the Schrödinger equation with a potential in $L_t^rL_x^s$, Math. Ann., 333 (2005), 271-290.doi: 10.1007/s00208-005-0672-0.

    [8]

    D. Foschi, Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ., 2 (2005), 1-24.doi: 10.1142/S0219891605000361.

    [9]

    J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Schrödinger equation revisited, Ann. Inst. H. Poincaré Anal. Non Linéare, 2 (1985), 309-327.

    [10]

    L. Grafakos, Classical Fourier Analysis, $2^{nd}$ edition, Graduate Texts in Mathematics, 249. Springer, New York, 2008.

    [11]

    Z. Guo and Y. Wang, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations, J. Anal. Math., 124 (2014), 1-38.doi: 10.1007/s11854-014-0025-6.

    [12]

    T. Kato, An $L^{q,r}$ -theory for nonlinear Schrödinger equations, in Spectral and scattering theory and applications, Adv. Stud. Pure Math., Math. Soc. Japan, Tokyo, 23 (1994), 223-238.

    [13]

    Y. Ke, Remark on the Strichartz estimates in the radial case, J. Math. Anal. Appl., 387 (2012), 857-861.doi: 10.1016/j.jmaa.2011.09.039.

    [14]

    M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.doi: 10.1353/ajm.1998.0039.

    [15]

    Y. Koh, Improved inhomogeneous Strichartz estimates for the Schrödinger equation, J. Math. Anal. Appl., 373 (2011), 147-160.doi: 10.1016/j.jmaa.2010.06.019.

    [16]

    N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.doi: 10.1016/S0375-9601(00)00201-2.

    [17]

    S. Lee and I. Seo, A note on unique continuation for the Schrödinger equation, J. Math. Anal. Appl., 389 (2012), 461-468.doi: 10.1016/j.jmaa.2011.11.067.

    [18]

    S. Lee and I. Seo, On inhomogeneous Strichartz estimates for the Schrödinger equation, Rev. Mat. Iberoam., 30 (2014), 711-726.doi: 10.4171/RMI/797.

    [19]

    V. Naibo and A. Stefanov, On some Schrödinger and wave equations with time dependent potentials, Math. Ann., 334 (2006), 325-338.doi: 10.1007/s00208-005-0720-9.

    [20]

    I. Seo, Unique continuation for the Schrödinger equation with potentials in Wiener amalgam spaces, Indiana Univ. Math. J., 60 (2011), 1203-1227.doi: 10.1512/iumj.2011.60.4824.

    [21]

    S. Shao, Sharp linear and bilinear restriction estimate for paraboloids in the cylinderically symmetric case, Rev. Mat. Iberoam., 25 (2009), 1127-1168.doi: 10.4171/RMI/591.

    [22]

    E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 43. 1993.

    [23]

    R. S. Strichartz, Restriction of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714.doi: 10.1215/S0012-7094-77-04430-1.

    [24]

    M. C. Vilela, Inhomogeneous Strichartz estimates for the Schrödinger equation, Trans. Amer. Math. Soc., 359 (2007), 2123-2136.doi: 10.1090/S0002-9947-06-04099-2.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(192) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return