-
Previous Article
The three-dimensional center problem for the zero-Hopf singularity
- DCDS Home
- This Issue
-
Next Article
Real bounds and Lyapunov exponents
A combinatorial proof of the Kontsevich-Zorich-Boissy classification of Rauzy classes
1. | Fine Hall - Washington Road, Princeton, NJ 08544-1000, United States |
References:
[1] |
A. Avila and M. Viana, Simplicity of Lyapunov spectra: Proof of the Zorich-Kontsevich conjecture, Acta Math., 198 (2007), 1-56.
doi: 10.1007/s11511-007-0012-1. |
[2] |
C. Boissy, Classification of Rauzy classes in the moduli space of quadratic differentials, Discrete and Continuous Dynam. Systems - A, 32 (2012), 3433-3457.
doi: 10.3934/dcds.2012.32.3433. |
[3] |
C. Boissy, Labeled rauzy classes and framed translation surfaces, Annales de L'Institut Fourier, 63 (2013), 547-572.
doi: 10.5802/aif.2769. |
[4] |
C. Boissy, A combinatorial move on the set of jenkins-strebel differentials,, preprint, ().
|
[5] |
C. Boissy and E. Lanneau, Dynamics and geometry of the Rauzy-Veech induction for quadratic differentials, Ergodic Theory Dynam. Systems, 29 (2009), 767-816.
doi: 10.1017/S0143385708080565. |
[6] |
D. Chen and M. Möller, Quadratic differentials in low genus: Exceptional and non-varying, Annales scientifiques de l'École normale supérieure, 47 (2014), 309-369. |
[7] |
V. Delecroix, Cardinality of Rauzy classes, Annales de l'institute Fourier, 63 (2013), 1651-1715.
doi: 10.5802/aif.2811. |
[8] |
J. Fickenscher, Self-inverses in Rauzy Classes, Ph.D thesis, Rice University, 2011, arXiv:1103.3485. |
[9] |
J. Fickenscher, Labeled and non-labeled extended Rauzy classes,, preprint, ().
|
[10] |
J. Fickenscher, Self-inverses, Lagrangian permutations and minimal interval exchange transformations with many ergodic measures, Comm. in Contemporary Mathematics, 16 (2014), 1350019, 51pp.
doi: 10.1142/s0219199713500193. |
[11] |
M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153 (2003), 631-678.
doi: 10.1007/s00222-003-0303-x. |
[12] |
E. Lanneau, Connected components of the strata of the moduli spaces of quadratic differentials, Annales scientifiques de l'École normale supérieure, 41 (2008), 1-56. |
[13] |
G. Rauzy, Échanges d'intervalles et transformations induites, Acta Arith., 34 (1979), 315-328. |
[14] |
W. A. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2), 115 (1982), 201-242.
doi: 10.2307/1971391. |
[15] |
W. A. Veech, Moduli spaces of quadratic differentials, J. Analyse Math., 55 (1990), 117-171.
doi: 10.1007/BF02789200. |
[16] |
M. Viana, Ergodic theory of interval exchange maps, Rev. Mat. Complut., 19 (2006), 7-100.
doi: 10.5209/rev_rema.2006.v19.n1.16621. |
[17] |
A. Zorich, Explicit Jenkins-Strebel representatives of all strata of abelian and quadratic differentials. J. Mod. Dyn., 2 (2008), 139-185.
doi: 10.3934/jmd.2008.2.139. |
show all references
References:
[1] |
A. Avila and M. Viana, Simplicity of Lyapunov spectra: Proof of the Zorich-Kontsevich conjecture, Acta Math., 198 (2007), 1-56.
doi: 10.1007/s11511-007-0012-1. |
[2] |
C. Boissy, Classification of Rauzy classes in the moduli space of quadratic differentials, Discrete and Continuous Dynam. Systems - A, 32 (2012), 3433-3457.
doi: 10.3934/dcds.2012.32.3433. |
[3] |
C. Boissy, Labeled rauzy classes and framed translation surfaces, Annales de L'Institut Fourier, 63 (2013), 547-572.
doi: 10.5802/aif.2769. |
[4] |
C. Boissy, A combinatorial move on the set of jenkins-strebel differentials,, preprint, ().
|
[5] |
C. Boissy and E. Lanneau, Dynamics and geometry of the Rauzy-Veech induction for quadratic differentials, Ergodic Theory Dynam. Systems, 29 (2009), 767-816.
doi: 10.1017/S0143385708080565. |
[6] |
D. Chen and M. Möller, Quadratic differentials in low genus: Exceptional and non-varying, Annales scientifiques de l'École normale supérieure, 47 (2014), 309-369. |
[7] |
V. Delecroix, Cardinality of Rauzy classes, Annales de l'institute Fourier, 63 (2013), 1651-1715.
doi: 10.5802/aif.2811. |
[8] |
J. Fickenscher, Self-inverses in Rauzy Classes, Ph.D thesis, Rice University, 2011, arXiv:1103.3485. |
[9] |
J. Fickenscher, Labeled and non-labeled extended Rauzy classes,, preprint, ().
|
[10] |
J. Fickenscher, Self-inverses, Lagrangian permutations and minimal interval exchange transformations with many ergodic measures, Comm. in Contemporary Mathematics, 16 (2014), 1350019, 51pp.
doi: 10.1142/s0219199713500193. |
[11] |
M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153 (2003), 631-678.
doi: 10.1007/s00222-003-0303-x. |
[12] |
E. Lanneau, Connected components of the strata of the moduli spaces of quadratic differentials, Annales scientifiques de l'École normale supérieure, 41 (2008), 1-56. |
[13] |
G. Rauzy, Échanges d'intervalles et transformations induites, Acta Arith., 34 (1979), 315-328. |
[14] |
W. A. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2), 115 (1982), 201-242.
doi: 10.2307/1971391. |
[15] |
W. A. Veech, Moduli spaces of quadratic differentials, J. Analyse Math., 55 (1990), 117-171.
doi: 10.1007/BF02789200. |
[16] |
M. Viana, Ergodic theory of interval exchange maps, Rev. Mat. Complut., 19 (2006), 7-100.
doi: 10.5209/rev_rema.2006.v19.n1.16621. |
[17] |
A. Zorich, Explicit Jenkins-Strebel representatives of all strata of abelian and quadratic differentials. J. Mod. Dyn., 2 (2008), 139-185.
doi: 10.3934/jmd.2008.2.139. |
[1] |
Sébastien Labbé. Rauzy induction of polygon partitions and toral $ \mathbb{Z}^2 $-rotations. Journal of Modern Dynamics, 2021, 17: 481-528. doi: 10.3934/jmd.2021017 |
[2] |
Kariane Calta, John Smillie. Algebraically periodic translation surfaces. Journal of Modern Dynamics, 2008, 2 (2) : 209-248. doi: 10.3934/jmd.2008.2.209 |
[3] |
Giovanni Forni, Carlos Matheus. Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards. Journal of Modern Dynamics, 2014, 8 (3&4) : 271-436. doi: 10.3934/jmd.2014.8.271 |
[4] |
Benjamin Dozier. Equidistribution of saddle connections on translation surfaces. Journal of Modern Dynamics, 2019, 14: 87-120. doi: 10.3934/jmd.2019004 |
[5] |
Ivan Dynnikov, Alexandra Skripchenko. Minimality of interval exchange transformations with restrictions. Journal of Modern Dynamics, 2017, 11: 219-248. doi: 10.3934/jmd.2017010 |
[6] |
Pascal Hubert, Gabriela Schmithüsen. Infinite translation surfaces with infinitely generated Veech groups. Journal of Modern Dynamics, 2010, 4 (4) : 715-732. doi: 10.3934/jmd.2010.4.715 |
[7] |
Christopher F. Novak. Discontinuity-growth of interval-exchange maps. Journal of Modern Dynamics, 2009, 3 (3) : 379-405. doi: 10.3934/jmd.2009.3.379 |
[8] |
Luca Marchese. The Khinchin Theorem for interval-exchange transformations. Journal of Modern Dynamics, 2011, 5 (1) : 123-183. doi: 10.3934/jmd.2011.5.123 |
[9] |
Jon Chaika. Hausdorff dimension for ergodic measures of interval exchange transformations. Journal of Modern Dynamics, 2008, 2 (3) : 457-464. doi: 10.3934/jmd.2008.2.457 |
[10] |
Sébastien Ferenczi, Pascal Hubert. Rigidity of square-tiled interval exchange transformations. Journal of Modern Dynamics, 2019, 14: 153-177. doi: 10.3934/jmd.2019006 |
[11] |
David Ralston, Serge Troubetzkoy. Ergodic infinite group extensions of geodesic flows on translation surfaces. Journal of Modern Dynamics, 2012, 6 (4) : 477-497. doi: 10.3934/jmd.2012.6.477 |
[12] |
Alexander I. Bufetov. Hölder cocycles and ergodic integrals for translation flows on flat surfaces. Electronic Research Announcements, 2010, 17: 34-42. doi: 10.3934/era.2010.17.34 |
[13] |
Eugene Gutkin. Insecure configurations in lattice translation surfaces, with applications to polygonal billiards. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 367-382. doi: 10.3934/dcds.2006.16.367 |
[14] |
Artur Avila, Carlos Matheus, Jean-Christophe Yoccoz. The Kontsevich–Zorich cocycle over Veech–McMullen family of symmetric translation surfaces. Journal of Modern Dynamics, 2019, 14: 21-54. doi: 10.3934/jmd.2019002 |
[15] |
Denis Volk. Almost every interval translation map of three intervals is finite type. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2307-2314. doi: 10.3934/dcds.2014.34.2307 |
[16] |
Jon Chaika, Howard Masur. There exists an interval exchange with a non-ergodic generic measure. Journal of Modern Dynamics, 2015, 9: 289-304. doi: 10.3934/jmd.2015.9.289 |
[17] |
Jon Chaika, David Damanik, Helge Krüger. Schrödinger operators defined by interval-exchange transformations. Journal of Modern Dynamics, 2009, 3 (2) : 253-270. doi: 10.3934/jmd.2009.3.253 |
[18] |
Jacek Brzykcy, Krzysztof Frączek. Disjointness of interval exchange transformations from systems of probabilistic origin. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 53-73. doi: 10.3934/dcds.2010.27.53 |
[19] |
Corinna Ulcigrai. Weak mixing for logarithmic flows over interval exchange transformations. Journal of Modern Dynamics, 2009, 3 (1) : 35-49. doi: 10.3934/jmd.2009.3.35 |
[20] |
Davit Karagulyan. Hausdorff dimension of a class of three-interval exchange maps. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1257-1281. doi: 10.3934/dcds.2020077 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]