April  2016, 36(4): 2047-2067. doi: 10.3934/dcds.2016.36.2047

KdV waves in atomic chains with nonlocal interactions

1. 

Westfälische Wilhelms-Universität Münster, Institut für Numerische und Angewandte Mathematik, Einsteinstraße 62, 48149 Münster, Germany

2. 

Technische Universität München, Zentrum Mathematik, Boltzmannstraße 3, 85747 Garching, Germany

Received  March 2015 Revised  June 2015 Published  September 2015

We consider atomic chains with nonlocal particle interactions and prove the existence of near-sonic solitary waves. Both our result and the general proof strategy are reminiscent of the seminal paper by Friesecke and Pego on the KdV limit of chains with nearest neighbor interactions but differ in the following two aspects: First, we allow for a wider class of atomic systems and must hence replace the distance profile by the velocity profile. Second, in the asymptotic analysis we avoid a detailed Fourier pole characterization of the nonlocal integral operators and employ the contraction mapping principle to solve the final fixed point problem.
Citation: Michael Herrmann, Alice Mikikits-Leitner. KdV waves in atomic chains with nonlocal interactions. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2047-2067. doi: 10.3934/dcds.2016.36.2047
References:
[1]

M. Chirilus-Bruckner, C. Chong, O. Prill and G. Schneider, Rigorous description of macroscopic wave packets in infinite periodic chains of coupled oscillators by modulation equations, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 879-901. doi: 10.3934/dcdss.2012.5.879.

[2]

G. Friesecke and A. Mikikits-Leitner, Cnoidal waves on Fermi-Pasta-Ulam lattices, 2014,, To appear in J. Dyn. Diff. Equat., (). 

[3]

G. Friesecke and R. L. Pego, Solitary waves on FPU lattices. I. Qualitative properties, renormalization and continuum limit, Nonlinearity, 12 (1999), 1601-1627. doi: 10.1088/0951-7715/12/6/311.

[4]

G. Friesecke and R. L. Pego, Solitary waves on FPU lattices. II. Linear implies nonlinear stability, Nonlinearity, 15 (2002), 1343-1359. doi: 10.1088/0951-7715/15/4/317.

[5]

G. Friesecke and R. L. Pego, Solitary waves on Fermi-Pasta-Ulam lattices. III. Howland-type Floquet theory, Nonlinearity, 17 (2004), 207-227. doi: 10.1088/0951-7715/17/1/013.

[6]

G. Friesecke and R. L. Pego, Solitary waves on Fermi-Pasta-Ulam lattices. IV. Proof of stability at low energy, Nonlinearity, 17 (2004), 229-251. doi: 10.1088/0951-7715/17/1/014.

[7]

J. Gaison, S. Moskow, J. D. Wright and Q. Zhang, Approximation of polyatomic FPU lattices by KdV equations, Multiscale Model. Simul., 12 (2014), 953-995. doi: 10.1137/130941638.

[8]

M. Herrmann, Unimodal wavetrains and solitons in convex Fermi-Pasta-Ulam chains, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 753-785. doi: 10.1017/S0308210509000146.

[9]

M. Herrmann, K. Matthies, H. Schwetlick and J. Zimmer, Subsonic phase transition waves in bistable lattice models with small spinodal region, SIAM J. Math. Anal., 45 (2013), 2625-2645. doi: 10.1137/120877878.

[10]

M. Herrmann and J. D. M. Rademacher, Heteroclinic travelling waves in convex FPU-type chains, SIAM J. Math. Anal., 42 (2010), 1483-1504. doi: 10.1137/080743147.

[11]

A. Hoffman and C. E. Wayne, Counter-propagating two-soliton solutions in the Fermi-Pasta-Ulam lattice, Nonlinearity, 21 (2008), 2911-2947. doi: 10.1088/0951-7715/21/12/011.

[12]

A. Hoffman and C. E. Wayne, Asymptotic two-soliton solutions in the Fermi-Pasta-Ulam model, J. Dynam. Differential Equations, 21 (2009), 343-351. doi: 10.1007/s10884-009-9134-9.

[13]

A. Hoffman and C. E. Wayne, A simple proof of the stability of solitary waves in the Fermi-Pasta-Ulam model near the KdV limit, in Infinite dimensional dynamical systems, vol. 64 of Fields Inst. Commun., Springer, New York, 2013, 185-192. doi: 10.1007/978-1-4614-4523-4_7.

[14]

T. Mizumachi, $N$-soliton states of the Fermi-Pasta-Ulam lattices, SIAM J. Math. Anal., 43 (2011), 2170-2210. doi: 10.1137/100792457.

[15]

T. Mizumachi, Asymptotic stability of $N$-solitary waves of the FPU lattices, Arch. Ration. Mech. Anal., 207 (2013), 393-457. doi: 10.1007/s00205-012-0564-x.

[16]

P. M. Morse and H. Feshbach, Methods of Theoretical Physics. 2 volumes, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953.

[17]

G. Schneider and C. E. Wayne, Counter-propagating waves on fluid surfaces and the continuum limit of the Fermi-Pasta-Ulam model, in International Conference on Differential Equations, Vol. 1, 2 (Berlin, 1999), World Sci. Publ., River Edge, NJ, 2000, 390-404.

[18]

N. J. Zabusky and M. D. Kruskal, Interaction of 'solitons' in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15 (1965), 240-243. doi: 10.1103/PhysRevLett.15.240.

show all references

References:
[1]

M. Chirilus-Bruckner, C. Chong, O. Prill and G. Schneider, Rigorous description of macroscopic wave packets in infinite periodic chains of coupled oscillators by modulation equations, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 879-901. doi: 10.3934/dcdss.2012.5.879.

[2]

G. Friesecke and A. Mikikits-Leitner, Cnoidal waves on Fermi-Pasta-Ulam lattices, 2014,, To appear in J. Dyn. Diff. Equat., (). 

[3]

G. Friesecke and R. L. Pego, Solitary waves on FPU lattices. I. Qualitative properties, renormalization and continuum limit, Nonlinearity, 12 (1999), 1601-1627. doi: 10.1088/0951-7715/12/6/311.

[4]

G. Friesecke and R. L. Pego, Solitary waves on FPU lattices. II. Linear implies nonlinear stability, Nonlinearity, 15 (2002), 1343-1359. doi: 10.1088/0951-7715/15/4/317.

[5]

G. Friesecke and R. L. Pego, Solitary waves on Fermi-Pasta-Ulam lattices. III. Howland-type Floquet theory, Nonlinearity, 17 (2004), 207-227. doi: 10.1088/0951-7715/17/1/013.

[6]

G. Friesecke and R. L. Pego, Solitary waves on Fermi-Pasta-Ulam lattices. IV. Proof of stability at low energy, Nonlinearity, 17 (2004), 229-251. doi: 10.1088/0951-7715/17/1/014.

[7]

J. Gaison, S. Moskow, J. D. Wright and Q. Zhang, Approximation of polyatomic FPU lattices by KdV equations, Multiscale Model. Simul., 12 (2014), 953-995. doi: 10.1137/130941638.

[8]

M. Herrmann, Unimodal wavetrains and solitons in convex Fermi-Pasta-Ulam chains, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 753-785. doi: 10.1017/S0308210509000146.

[9]

M. Herrmann, K. Matthies, H. Schwetlick and J. Zimmer, Subsonic phase transition waves in bistable lattice models with small spinodal region, SIAM J. Math. Anal., 45 (2013), 2625-2645. doi: 10.1137/120877878.

[10]

M. Herrmann and J. D. M. Rademacher, Heteroclinic travelling waves in convex FPU-type chains, SIAM J. Math. Anal., 42 (2010), 1483-1504. doi: 10.1137/080743147.

[11]

A. Hoffman and C. E. Wayne, Counter-propagating two-soliton solutions in the Fermi-Pasta-Ulam lattice, Nonlinearity, 21 (2008), 2911-2947. doi: 10.1088/0951-7715/21/12/011.

[12]

A. Hoffman and C. E. Wayne, Asymptotic two-soliton solutions in the Fermi-Pasta-Ulam model, J. Dynam. Differential Equations, 21 (2009), 343-351. doi: 10.1007/s10884-009-9134-9.

[13]

A. Hoffman and C. E. Wayne, A simple proof of the stability of solitary waves in the Fermi-Pasta-Ulam model near the KdV limit, in Infinite dimensional dynamical systems, vol. 64 of Fields Inst. Commun., Springer, New York, 2013, 185-192. doi: 10.1007/978-1-4614-4523-4_7.

[14]

T. Mizumachi, $N$-soliton states of the Fermi-Pasta-Ulam lattices, SIAM J. Math. Anal., 43 (2011), 2170-2210. doi: 10.1137/100792457.

[15]

T. Mizumachi, Asymptotic stability of $N$-solitary waves of the FPU lattices, Arch. Ration. Mech. Anal., 207 (2013), 393-457. doi: 10.1007/s00205-012-0564-x.

[16]

P. M. Morse and H. Feshbach, Methods of Theoretical Physics. 2 volumes, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953.

[17]

G. Schneider and C. E. Wayne, Counter-propagating waves on fluid surfaces and the continuum limit of the Fermi-Pasta-Ulam model, in International Conference on Differential Equations, Vol. 1, 2 (Berlin, 1999), World Sci. Publ., River Edge, NJ, 2000, 390-404.

[18]

N. J. Zabusky and M. D. Kruskal, Interaction of 'solitons' in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15 (1965), 240-243. doi: 10.1103/PhysRevLett.15.240.

[1]

Fanzhi Chen, Michael Herrmann. KdV-like solitary waves in two-dimensional FPU-lattices. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2305-2332. doi: 10.3934/dcds.2018095

[2]

Dmitry Treschev. Travelling waves in FPU lattices. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867

[3]

Dashun Xu, Xiao-Qiang Zhao. Asymptotic speed of spread and traveling waves for a nonlocal epidemic model. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 1043-1056. doi: 10.3934/dcdsb.2005.5.1043

[4]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407

[5]

Dario Bambusi, D. Vella. Quasi periodic breathers in Hamiltonian lattices with symmetries. Discrete and Continuous Dynamical Systems - B, 2002, 2 (3) : 389-399. doi: 10.3934/dcdsb.2002.2.389

[6]

Nate Bottman, Bernard Deconinck. KdV cnoidal waves are spectrally stable. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1163-1180. doi: 10.3934/dcds.2009.25.1163

[7]

Qiang Du, Jingyan Zhang. Asymptotic analysis of a diffuse interface relaxation to a nonlocal optimal partition problem. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1443-1461. doi: 10.3934/dcds.2011.29.1443

[8]

Kay Kirkpatrick. Rigorous derivation of the Landau equation in the weak coupling limit. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1895-1916. doi: 10.3934/cpaa.2009.8.1895

[9]

Rui Huang, Ming Mei, Kaijun Zhang, Qifeng Zhang. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1331-1353. doi: 10.3934/dcds.2016.36.1331

[10]

Fang-Di Dong, Wan-Tong Li, Jia-Bing Wang. Asymptotic behavior of traveling waves for a three-component system with nonlocal dispersal and its application. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6291-6318. doi: 10.3934/dcds.2017272

[11]

Tomás Caraballo, Francisco Morillas, José Valero. Asymptotic behaviour of a logistic lattice system. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4019-4037. doi: 10.3934/dcds.2014.34.4019

[12]

Alexander Pankov, Vassilis M. Rothos. Traveling waves in Fermi-Pasta-Ulam lattices with saturable nonlinearities. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 835-849. doi: 10.3934/dcds.2011.30.835

[13]

Cheng Hou Tsang, Boris A. Malomed, Kwok Wing Chow. Exact solutions for periodic and solitary matter waves in nonlinear lattices. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1299-1325. doi: 10.3934/dcdss.2011.4.1299

[14]

Elena Bonetti, Giovanna Bonfanti, Riccarda Rossi. Analysis of a model coupling volume and surface processes in thermoviscoelasticity. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2349-2403. doi: 10.3934/dcds.2015.35.2349

[15]

Alejandro B. Aceves, Luis A. Cisneros-Ake, Antonmaria A. Minzoni. Asymptotics for supersonic traveling waves in the Morse lattice. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 975-994. doi: 10.3934/dcdss.2011.4.975

[16]

Xiaoli Wang, Peter Kloeden, Meihua Yang. Asymptotic behaviour of a neural field lattice model with delays. Electronic Research Archive, 2020, 28 (2) : 1037-1048. doi: 10.3934/era.2020056

[17]

Rong Rong, Yi Peng. KdV-type equation limit for ion dynamics system. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1699-1719. doi: 10.3934/cpaa.2021037

[18]

Aiyong Chen, Chi Zhang, Wentao Huang. Limit speed of traveling wave solutions for the perturbed generalized KdV equation. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022048

[19]

Yuqian Zhou, Qian Liu. Reduction and bifurcation of traveling waves of the KdV-Burgers-Kuramoto equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 2057-2071. doi: 10.3934/dcdsb.2016036

[20]

Junhyeok Byeon, Seung-Yeal Ha, Hansol Park. Asymptotic interplay of states and adaptive coupling gains in the Lohe Hermitian sphere model. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022007

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (129)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]