April  2016, 36(4): 2069-2084. doi: 10.3934/dcds.2016.36.2069

A proof of anomalous invasion speeds in a system of coupled Fisher-KPP equations

1. 

Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, United States

Received  September 2014 Revised  July 2015 Published  September 2015

This article is concerned with the rigorous validation of anomalous spreading speeds in a system of coupled Fisher-KPP equations of cooperative type. Anomalous spreading refers to a scenario wherein the coupling of two equations leads to faster spreading speeds in one of the components. The existence of these spreading speeds can be predicted from the linearization about the unstable state. We prove that initial data consisting of compactly supported perturbations of Heaviside step functions spreads asymptotically with the anomalous speed. The proof makes use of a comparison principle and the explicit construction of sub and super solutions.
Citation: Matt Holzer. A proof of anomalous invasion speeds in a system of coupled Fisher-KPP equations. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2069-2084. doi: 10.3934/dcds.2016.36.2069
References:
[1]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. in Math., 30 (1978), 33-76. doi: 10.1016/0001-8708(78)90130-5.

[2]

S. Bell, A. White, J. Sherratt and M. Boots, Invading with biological weapons: The role of shared disease in ecological invasion, Theoretical Ecology, 2 (2009), 53-66. doi: 10.1007/s12080-008-0029-x.

[3]

M. R. Booty, R. Haberman and A. A. Minzoni, The accommodation of traveling waves of Fisher's type to the dynamics of the leading tail, SIAM J. Appl. Math., 53 (1993), 1009-1025. doi: 10.1137/0153050.

[4]

M. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves, Mem. Amer. Math. Soc., 44 (1983), iv+190pp. doi: 10.1090/memo/0285.

[5]

E. C. Elliott and S. J. Cornell, Dispersal polymorphism and the speed of biological invasions, PLoS ONE, 7 (2012), e40496. doi: 10.1371/journal.pone.0040496.

[6]

P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal., 65 (1977), 335-361.

[7]

R. A. Fisher, The wave of advance of advantageous genes, Annals of Human Genetics, 7 (1937), 355-369. doi: 10.1111/j.1469-1809.1937.tb02153.x.

[8]

M. Freidlin, Coupled reaction-diffusion equations, Ann. Probab., 19 (1991), 29-57. doi: 10.1214/aop/1176990535.

[9]

A. Ghazaryan, P. Gordon and A. Virodov, Stability of fronts and transient behaviour in KPP systems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466 (2010), 1769-1788. doi: 10.1098/rspa.2009.0400.

[10]

F. Hamel, J. Nolen, J.-M. Roquejoffre and L. Ryzhik, A short proof of the logarithmic Bramson correction in Fisher-{KPP} equations, Netw. Heterog. Media, 8 (2013), 275-289. doi: 10.3934/nhm.2013.8.275.

[11]

M. Holzer, Anomalous spreading in a system of coupled Fisher-KPP equations, Phys. D, 270 (2014), 1-10. doi: 10.1016/j.physd.2013.12.003.

[12]

M. Holzer and A. Scheel, A slow pushed front in a Lotka Volterra competition model, Nonlinearity, 25 (2012), 2151-2179. doi: 10.1088/0951-7715/25/7/2151.

[13]

M. Holzer and A. Scheel, Criteria for pointwise growth and their role in invasion processes, J. Nonlinear Sci., 24 (2014), 661-709. doi: 10.1007/s00332-014-9202-0.

[14]

M. Iida, R. Lui and H. Ninomiya, Stacked fronts for cooperative systems with equal diffusion coefficients, SIAM Journal on Mathematical Analysis, 43 (2011), 1369-1389. doi: 10.1137/100792846.

[15]

A. Kolmogorov, I. Petrovskii and N. Piscounov, Etude de l'equation de la diffusion avec croissance de la quantite' de matiere et son application a un probleme biologique, Moscow Univ. Math. Bull., 1 (1937), 1-25.

[16]

B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems, Math. Biosci., 196 (2005), 82-98. doi: 10.1016/j.mbs.2005.03.008.

[17]

G. Raugel and K. Kirchgässner, Stability of fronts for a KPP-system. II. The critical case, J. Differential Equations, 146 (1998), 399-456. doi: 10.1006/jdeq.1997.3391.

[18]

W. van Saarloos, Front propagation into unstable states, Physics Reports, 386 (2003), 29-222, URL http://www.sciencedirect.com/science/article/B6TVP-49NRRH3-1/2/f72369c3740ab78cb617cc7ad577ed4f.

[19]

H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., 45 (2002), 183-218. doi: 10.1007/s002850200145.

[20]

H. F. Weinberger, M. A. Lewis and B. Li, Anomalous spreading speeds of cooperative recursion systems, J. Math. Biol., 55 (2007), 207-222. doi: 10.1007/s00285-007-0078-6.

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. in Math., 30 (1978), 33-76. doi: 10.1016/0001-8708(78)90130-5.

[2]

S. Bell, A. White, J. Sherratt and M. Boots, Invading with biological weapons: The role of shared disease in ecological invasion, Theoretical Ecology, 2 (2009), 53-66. doi: 10.1007/s12080-008-0029-x.

[3]

M. R. Booty, R. Haberman and A. A. Minzoni, The accommodation of traveling waves of Fisher's type to the dynamics of the leading tail, SIAM J. Appl. Math., 53 (1993), 1009-1025. doi: 10.1137/0153050.

[4]

M. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves, Mem. Amer. Math. Soc., 44 (1983), iv+190pp. doi: 10.1090/memo/0285.

[5]

E. C. Elliott and S. J. Cornell, Dispersal polymorphism and the speed of biological invasions, PLoS ONE, 7 (2012), e40496. doi: 10.1371/journal.pone.0040496.

[6]

P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal., 65 (1977), 335-361.

[7]

R. A. Fisher, The wave of advance of advantageous genes, Annals of Human Genetics, 7 (1937), 355-369. doi: 10.1111/j.1469-1809.1937.tb02153.x.

[8]

M. Freidlin, Coupled reaction-diffusion equations, Ann. Probab., 19 (1991), 29-57. doi: 10.1214/aop/1176990535.

[9]

A. Ghazaryan, P. Gordon and A. Virodov, Stability of fronts and transient behaviour in KPP systems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466 (2010), 1769-1788. doi: 10.1098/rspa.2009.0400.

[10]

F. Hamel, J. Nolen, J.-M. Roquejoffre and L. Ryzhik, A short proof of the logarithmic Bramson correction in Fisher-{KPP} equations, Netw. Heterog. Media, 8 (2013), 275-289. doi: 10.3934/nhm.2013.8.275.

[11]

M. Holzer, Anomalous spreading in a system of coupled Fisher-KPP equations, Phys. D, 270 (2014), 1-10. doi: 10.1016/j.physd.2013.12.003.

[12]

M. Holzer and A. Scheel, A slow pushed front in a Lotka Volterra competition model, Nonlinearity, 25 (2012), 2151-2179. doi: 10.1088/0951-7715/25/7/2151.

[13]

M. Holzer and A. Scheel, Criteria for pointwise growth and their role in invasion processes, J. Nonlinear Sci., 24 (2014), 661-709. doi: 10.1007/s00332-014-9202-0.

[14]

M. Iida, R. Lui and H. Ninomiya, Stacked fronts for cooperative systems with equal diffusion coefficients, SIAM Journal on Mathematical Analysis, 43 (2011), 1369-1389. doi: 10.1137/100792846.

[15]

A. Kolmogorov, I. Petrovskii and N. Piscounov, Etude de l'equation de la diffusion avec croissance de la quantite' de matiere et son application a un probleme biologique, Moscow Univ. Math. Bull., 1 (1937), 1-25.

[16]

B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems, Math. Biosci., 196 (2005), 82-98. doi: 10.1016/j.mbs.2005.03.008.

[17]

G. Raugel and K. Kirchgässner, Stability of fronts for a KPP-system. II. The critical case, J. Differential Equations, 146 (1998), 399-456. doi: 10.1006/jdeq.1997.3391.

[18]

W. van Saarloos, Front propagation into unstable states, Physics Reports, 386 (2003), 29-222, URL http://www.sciencedirect.com/science/article/B6TVP-49NRRH3-1/2/f72369c3740ab78cb617cc7ad577ed4f.

[19]

H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., 45 (2002), 183-218. doi: 10.1007/s002850200145.

[20]

H. F. Weinberger, M. A. Lewis and B. Li, Anomalous spreading speeds of cooperative recursion systems, J. Math. Biol., 55 (2007), 207-222. doi: 10.1007/s00285-007-0078-6.

[1]

Mohammed Mesk, Ali Moussaoui. On an upper bound for the spreading speed. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3897-3912. doi: 10.3934/dcdsb.2021210

[2]

Mei Li, Zhigui Lin. The spreading fronts in a mutualistic model with advection. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2089-2105. doi: 10.3934/dcdsb.2015.20.2089

[3]

Hans Weinberger. On sufficient conditions for a linearly determinate spreading speed. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2267-2280. doi: 10.3934/dcdsb.2012.17.2267

[4]

Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundary model. Networks and Heterogeneous Media, 2012, 7 (4) : 583-603. doi: 10.3934/nhm.2012.7.583

[5]

Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067

[6]

Meng Zhao, Wan-Tong Li, Wenjie Ni. Spreading speed of a degenerate and cooperative epidemic model with free boundaries. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 981-999. doi: 10.3934/dcdsb.2019199

[7]

Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591

[8]

Zhiguo Wang, Hua Nie, Yihong Du. Asymptotic spreading speed for the weak competition system with a free boundary. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5223-5262. doi: 10.3934/dcds.2019213

[9]

Feng Cao, Wenxian Shen. Spreading speeds and transition fronts of lattice KPP equations in time heterogeneous media. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4697-4727. doi: 10.3934/dcds.2017202

[10]

Qian Liu, Shuang Liu, King-Yeung Lam. Asymptotic spreading of interacting species with multiple fronts Ⅰ: A geometric optics approach. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3683-3714. doi: 10.3934/dcds.2020050

[11]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[12]

Peixuan Weng. Spreading speed and traveling wavefront of an age-structured population diffusing in a 2D lattice strip. Discrete and Continuous Dynamical Systems - B, 2009, 12 (4) : 883-904. doi: 10.3934/dcdsb.2009.12.883

[13]

Gregoire Nadin. How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms?. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1785-1803. doi: 10.3934/dcdsb.2015.20.1785

[14]

Chang-Hong Wu. Spreading speed and traveling waves for a two-species weak competition system with free boundary. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2441-2455. doi: 10.3934/dcdsb.2013.18.2441

[15]

Shuang-Ming Wang, Zhaosheng Feng, Zhi-Cheng Wang, Liang Zhang. Spreading speed and periodic traveling waves of a time periodic and diffusive SI epidemic model with demographic structure. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2005-2034. doi: 10.3934/cpaa.2021145

[16]

Yanqin Fang, De Tang. Method of sub-super solutions for fractional elliptic equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3153-3165. doi: 10.3934/dcdsb.2017212

[17]

Changbing Hu, Yang Kuang, Bingtuan Li, Hao Liu. Spreading speeds and traveling wave solutions in cooperative integral-differential systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1663-1684. doi: 10.3934/dcdsb.2015.20.1663

[18]

Hans F. Weinberger, Xiao-Qiang Zhao. An extension of the formula for spreading speeds. Mathematical Biosciences & Engineering, 2010, 7 (1) : 187-194. doi: 10.3934/mbe.2010.7.187

[19]

Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267

[20]

Simona Fornaro, Stefano Lisini, Giuseppe Savaré, Giuseppe Toscani. Measure valued solutions of sub-linear diffusion equations with a drift term. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1675-1707. doi: 10.3934/dcds.2012.32.1675

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (80)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]