April  2016, 36(4): 2193-2204. doi: 10.3934/dcds.2016.36.2193

Local solutions with infinite energy of the Maxwell-Chern-Simons-Higgs system in Lorenz gauge

1. 

Fachbereich Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany

Received  November 2014 Revised  July 2015 Published  September 2015

We consider the Maxwell-Chern-Simons-Higgs system in Lorenz gauge and use a null condition to show local well-psoedness for low regularity data. This improves a recent result of J. Yuan.
Citation: Hartmut Pecher. Local solutions with infinite energy of the Maxwell-Chern-Simons-Higgs system in Lorenz gauge. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2193-2204. doi: 10.3934/dcds.2016.36.2193
References:
[1]

P. d'Ancona, D. Foschi and S. Selberg, Product estimates for wave-Sobolev spaces in 2+1 and 1+1 dimensions, Contemporary Math., 526 (2010), 125-150. doi: 10.1090/conm/526/10379.

[2]

D. Chae and M. Chae, The global existence in the Cauchy problem of the Maxwell-Chern-Simons-Higgs system, J. Math. Phys., 43 (2002), 5470-5482. doi: 10.1063/1.1507609.

[3]

C. Lee, K. Lee and H. Min, Self-dual Maxwell-Chern-Simons solitons, Phys. Letters B, 252 (1990), 79-83. doi: 10.1016/0370-2693(90)91084-O.

[4]

S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equation with finite energy, Duke Math. J., 74 (1994), 19-44. doi: 10.1215/S0012-7094-94-07402-4.

[5]

S. Selberg and A. Tesfahun, Finite energy global well-posedness of the Maxwell-Klein-Gordon system in Lorenz gauge, Comm. PDE, 35 (2010), 1029-1057. doi: 10.1080/03605301003717100.

[6]

S. Selberg and A. Tesfahun, Global well-posedness of the Chern-Simons-Higgs equations with finite energy, Discrete Cont. Dyn. Syst., 33 (2013), 2531-2546. doi: 10.3934/dcds.2013.33.2531.

[7]

J. Yuan, On the well-posedness of Maxwell-Chern-Simons-Higgs system in the Lorenz gauge, Discrete Cont. Dyn. Syst., 34 (2014), 2389-2403. doi: 10.3934/dcds.2014.34.2389.

show all references

References:
[1]

P. d'Ancona, D. Foschi and S. Selberg, Product estimates for wave-Sobolev spaces in 2+1 and 1+1 dimensions, Contemporary Math., 526 (2010), 125-150. doi: 10.1090/conm/526/10379.

[2]

D. Chae and M. Chae, The global existence in the Cauchy problem of the Maxwell-Chern-Simons-Higgs system, J. Math. Phys., 43 (2002), 5470-5482. doi: 10.1063/1.1507609.

[3]

C. Lee, K. Lee and H. Min, Self-dual Maxwell-Chern-Simons solitons, Phys. Letters B, 252 (1990), 79-83. doi: 10.1016/0370-2693(90)91084-O.

[4]

S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equation with finite energy, Duke Math. J., 74 (1994), 19-44. doi: 10.1215/S0012-7094-94-07402-4.

[5]

S. Selberg and A. Tesfahun, Finite energy global well-posedness of the Maxwell-Klein-Gordon system in Lorenz gauge, Comm. PDE, 35 (2010), 1029-1057. doi: 10.1080/03605301003717100.

[6]

S. Selberg and A. Tesfahun, Global well-posedness of the Chern-Simons-Higgs equations with finite energy, Discrete Cont. Dyn. Syst., 33 (2013), 2531-2546. doi: 10.3934/dcds.2013.33.2531.

[7]

J. Yuan, On the well-posedness of Maxwell-Chern-Simons-Higgs system in the Lorenz gauge, Discrete Cont. Dyn. Syst., 34 (2014), 2389-2403. doi: 10.3934/dcds.2014.34.2389.

[1]

Jianjun Yuan. On the well-posedness of Maxwell-Chern-Simons-Higgs system in the Lorenz gauge. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2389-2403. doi: 10.3934/dcds.2014.34.2389

[2]

Sigmund Selberg, Achenef Tesfahun. Global well-posedness of the Chern-Simons-Higgs equations with finite energy. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2531-2546. doi: 10.3934/dcds.2013.33.2531

[3]

Hartmut Pecher. Local well-posedness for the Maxwell-Dirac system in temporal gauge. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 3065-3076. doi: 10.3934/dcds.2022008

[4]

Magdalena Czubak, Nina Pikula. Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1669-1683. doi: 10.3934/cpaa.2014.13.1669

[5]

Hartmut Pecher. The Chern-Simons-Higgs and the Chern-Simons-Dirac equations in Fourier-Lebesgue spaces. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4875-4893. doi: 10.3934/dcds.2019199

[6]

Hyungjin Huh. Towards the Chern-Simons-Higgs equation with finite energy. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1145-1159. doi: 10.3934/dcds.2011.30.1145

[7]

Hartmut Pecher. Almost optimal local well-posedness for the Maxwell-Klein-Gordon system with data in Fourier-Lebesgue spaces. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3303-3321. doi: 10.3934/cpaa.2020146

[8]

Jishan Fan, Yueling Jia. Local well-posedness of the full compressible Navier-Stokes-Maxwell system with vacuum. Kinetic and Related Models, 2018, 11 (1) : 97-106. doi: 10.3934/krm.2018005

[9]

Nikolaos Bournaveas, Timothy Candy, Shuji Machihara. A note on the Chern-Simons-Dirac equations in the Coulomb gauge. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2693-2701. doi: 10.3934/dcds.2014.34.2693

[10]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[11]

Youngae Lee. Topological solutions in the Maxwell-Chern-Simons model with anomalous magnetic moment. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1293-1314. doi: 10.3934/dcds.2018053

[12]

Jeongho Kim, Bora Moon. Hydrodynamic limits of the nonlinear Schrödinger equation with the Chern-Simons gauge fields. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2541-2561. doi: 10.3934/dcds.2021202

[13]

Christopher Henderson, Stanley Snelson, Andrei Tarfulea. Local well-posedness of the Boltzmann equation with polynomially decaying initial data. Kinetic and Related Models, 2020, 13 (4) : 837-867. doi: 10.3934/krm.2020029

[14]

Yong Zhou, Jishan Fan. Local well-posedness for the ideal incompressible density dependent magnetohydrodynamic equations. Communications on Pure and Applied Analysis, 2010, 9 (3) : 813-818. doi: 10.3934/cpaa.2010.9.813

[15]

Caochuan Ma, Zaihong Jiang, Renhui Wan. Local well-posedness for the tropical climate model with fractional velocity diffusion. Kinetic and Related Models, 2016, 9 (3) : 551-570. doi: 10.3934/krm.2016006

[16]

Timur Akhunov. Local well-posedness of quasi-linear systems generalizing KdV. Communications on Pure and Applied Analysis, 2013, 12 (2) : 899-921. doi: 10.3934/cpaa.2013.12.899

[17]

Hung Luong. Local well-posedness for the Zakharov system on the background of a line soliton. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2657-2682. doi: 10.3934/cpaa.2018126

[18]

Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure and Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673

[19]

Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139

[20]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations and Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]