-
Previous Article
Spike vector solutions for some coupled nonlinear Schrödinger equations
- DCDS Home
- This Issue
-
Next Article
Well-posedness and blow-up scenario for a new integrable four-component system with peakon solutions
Local solutions with infinite energy of the Maxwell-Chern-Simons-Higgs system in Lorenz gauge
1. | Fachbereich Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany |
References:
[1] |
P. d'Ancona, D. Foschi and S. Selberg, Product estimates for wave-Sobolev spaces in 2+1 and 1+1 dimensions, Contemporary Math., 526 (2010), 125-150.
doi: 10.1090/conm/526/10379. |
[2] |
D. Chae and M. Chae, The global existence in the Cauchy problem of the Maxwell-Chern-Simons-Higgs system, J. Math. Phys., 43 (2002), 5470-5482.
doi: 10.1063/1.1507609. |
[3] |
C. Lee, K. Lee and H. Min, Self-dual Maxwell-Chern-Simons solitons, Phys. Letters B, 252 (1990), 79-83.
doi: 10.1016/0370-2693(90)91084-O. |
[4] |
S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equation with finite energy, Duke Math. J., 74 (1994), 19-44.
doi: 10.1215/S0012-7094-94-07402-4. |
[5] |
S. Selberg and A. Tesfahun, Finite energy global well-posedness of the Maxwell-Klein-Gordon system in Lorenz gauge, Comm. PDE, 35 (2010), 1029-1057.
doi: 10.1080/03605301003717100. |
[6] |
S. Selberg and A. Tesfahun, Global well-posedness of the Chern-Simons-Higgs equations with finite energy, Discrete Cont. Dyn. Syst., 33 (2013), 2531-2546.
doi: 10.3934/dcds.2013.33.2531. |
[7] |
J. Yuan, On the well-posedness of Maxwell-Chern-Simons-Higgs system in the Lorenz gauge, Discrete Cont. Dyn. Syst., 34 (2014), 2389-2403.
doi: 10.3934/dcds.2014.34.2389. |
show all references
References:
[1] |
P. d'Ancona, D. Foschi and S. Selberg, Product estimates for wave-Sobolev spaces in 2+1 and 1+1 dimensions, Contemporary Math., 526 (2010), 125-150.
doi: 10.1090/conm/526/10379. |
[2] |
D. Chae and M. Chae, The global existence in the Cauchy problem of the Maxwell-Chern-Simons-Higgs system, J. Math. Phys., 43 (2002), 5470-5482.
doi: 10.1063/1.1507609. |
[3] |
C. Lee, K. Lee and H. Min, Self-dual Maxwell-Chern-Simons solitons, Phys. Letters B, 252 (1990), 79-83.
doi: 10.1016/0370-2693(90)91084-O. |
[4] |
S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equation with finite energy, Duke Math. J., 74 (1994), 19-44.
doi: 10.1215/S0012-7094-94-07402-4. |
[5] |
S. Selberg and A. Tesfahun, Finite energy global well-posedness of the Maxwell-Klein-Gordon system in Lorenz gauge, Comm. PDE, 35 (2010), 1029-1057.
doi: 10.1080/03605301003717100. |
[6] |
S. Selberg and A. Tesfahun, Global well-posedness of the Chern-Simons-Higgs equations with finite energy, Discrete Cont. Dyn. Syst., 33 (2013), 2531-2546.
doi: 10.3934/dcds.2013.33.2531. |
[7] |
J. Yuan, On the well-posedness of Maxwell-Chern-Simons-Higgs system in the Lorenz gauge, Discrete Cont. Dyn. Syst., 34 (2014), 2389-2403.
doi: 10.3934/dcds.2014.34.2389. |
[1] |
Jianjun Yuan. On the well-posedness of Maxwell-Chern-Simons-Higgs system in the Lorenz gauge. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2389-2403. doi: 10.3934/dcds.2014.34.2389 |
[2] |
Sigmund Selberg, Achenef Tesfahun. Global well-posedness of the Chern-Simons-Higgs equations with finite energy. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2531-2546. doi: 10.3934/dcds.2013.33.2531 |
[3] |
Hartmut Pecher. Local well-posedness for the Maxwell-Dirac system in temporal gauge. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 3065-3076. doi: 10.3934/dcds.2022008 |
[4] |
Magdalena Czubak, Nina Pikula. Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1669-1683. doi: 10.3934/cpaa.2014.13.1669 |
[5] |
Hartmut Pecher. The Chern-Simons-Higgs and the Chern-Simons-Dirac equations in Fourier-Lebesgue spaces. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4875-4893. doi: 10.3934/dcds.2019199 |
[6] |
Hyungjin Huh. Towards the Chern-Simons-Higgs equation with finite energy. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1145-1159. doi: 10.3934/dcds.2011.30.1145 |
[7] |
Hartmut Pecher. Almost optimal local well-posedness for the Maxwell-Klein-Gordon system with data in Fourier-Lebesgue spaces. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3303-3321. doi: 10.3934/cpaa.2020146 |
[8] |
Jishan Fan, Yueling Jia. Local well-posedness of the full compressible Navier-Stokes-Maxwell system with vacuum. Kinetic and Related Models, 2018, 11 (1) : 97-106. doi: 10.3934/krm.2018005 |
[9] |
Nikolaos Bournaveas, Timothy Candy, Shuji Machihara. A note on the Chern-Simons-Dirac equations in the Coulomb gauge. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2693-2701. doi: 10.3934/dcds.2014.34.2693 |
[10] |
Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007 |
[11] |
Youngae Lee. Topological solutions in the Maxwell-Chern-Simons model with anomalous magnetic moment. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1293-1314. doi: 10.3934/dcds.2018053 |
[12] |
Jeongho Kim, Bora Moon. Hydrodynamic limits of the nonlinear Schrödinger equation with the Chern-Simons gauge fields. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2541-2561. doi: 10.3934/dcds.2021202 |
[13] |
Christopher Henderson, Stanley Snelson, Andrei Tarfulea. Local well-posedness of the Boltzmann equation with polynomially decaying initial data. Kinetic and Related Models, 2020, 13 (4) : 837-867. doi: 10.3934/krm.2020029 |
[14] |
Yong Zhou, Jishan Fan. Local well-posedness for the ideal incompressible density dependent magnetohydrodynamic equations. Communications on Pure and Applied Analysis, 2010, 9 (3) : 813-818. doi: 10.3934/cpaa.2010.9.813 |
[15] |
Caochuan Ma, Zaihong Jiang, Renhui Wan. Local well-posedness for the tropical climate model with fractional velocity diffusion. Kinetic and Related Models, 2016, 9 (3) : 551-570. doi: 10.3934/krm.2016006 |
[16] |
Timur Akhunov. Local well-posedness of quasi-linear systems generalizing KdV. Communications on Pure and Applied Analysis, 2013, 12 (2) : 899-921. doi: 10.3934/cpaa.2013.12.899 |
[17] |
Hung Luong. Local well-posedness for the Zakharov system on the background of a line soliton. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2657-2682. doi: 10.3934/cpaa.2018126 |
[18] |
Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure and Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673 |
[19] |
Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139 |
[20] |
Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations and Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]