• Previous Article
    Sharp time decay rates on a hyperbolic plate model under effects of an intermediate damping with a time-dependent coefficient
  • DCDS Home
  • This Issue
  • Next Article
    A volume-based approach to the multiplicative ergodic theorem on Banach spaces
May  2016, 36(5): 2405-2417. doi: 10.3934/dcds.2016.36.2405

Flows of vector fields with point singularities and the vortex-wave system

1. 

Departement Mathematik und Informatik, Universität Basel, Spiegelgasse 1, 4051 Basel

2. 

Instituto de Matemática, Universidade Federal do Rio de Janeiro, Cidade Universitária - Ilha do Fundão, Caixa Postal 68530, 21941-909 Rio de Janeiro, RJ, Brazil, Brazil

3. 

Ecole Polytechnique, Centre de Mathématiques Laurent Schwartz, 91128 Palaiseau, France

Received  April 2015 Revised  August 2015 Published  October 2015

The vortex-wave system is a version of the vorticity equation governing the motion of 2D incompressible fluids in which vorticity is split into a finite sum of Diracs, evolved through an ODE, plus an $L^p$ part, evolved through an active scalar transport equation. Existence of a weak solution for this system was recently proved by Lopes Filho, Miot and Nussenzveig Lopes, for $p>2$, but their result left open the existence and basic properties of the underlying Lagrangian flow. In this article we study existence, uniqueness and the qualitative properties of the (Lagrangian flow for the) linear transport problem associated to the vortex-wave system. To this end, we study the flow associated to a two-dimensional vector field which is singular at a moving point. We first observe that existence and uniqueness of the regular Lagrangian flow are ensured by combining previous results by Ambrosio and by Lacave and Miot. In addition we prove that, generically, the Lagrangian trajectories do not collide with the point singularity. In the second part we present an approximation scheme for the flow, with explicit error estimates obtained by adapting results by Crippa and De Lellis for Sobolev vector fields.
Citation: Gianluca Crippa, Milton C. Lopes Filho, Evelyne Miot, Helena J. Nussenzveig Lopes. Flows of vector fields with point singularities and the vortex-wave system. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2405-2417. doi: 10.3934/dcds.2016.36.2405
References:
[1]

L. Ambrosio, Transport equation and Cauchy problem for BV vector fields, Invent. Math., 158 (2004), 227-260. doi: 10.1007/s00222-004-0367-2.

[2]

L. Ambrosio, Transport equation and Cauchy problem for non-smooth vector fields, in Calculus of Variations and Nonlinear Partial Differential Equations, Lecture Notes in Math., 1927, Springer, Berlin, 2008, 1-41. doi: 10.1007/978-3-540-75914-0_1.

[3]

L. Ambrosio and G. Crippa, Existence, uniqueness, stability and differentiability properties of the flow associated to weakly differentiable vector fields, in Transport Equations and Multi-D Hyperbolic Conservation Laws, Lecture Notes of the Unione Matematica Italiana, 5, Springer, Berlin, 2008, 3-57. doi: 10.1007/978-3-540-76781-7_1.

[4]

L. Ambrosio and G. Crippa, Continuity equations and ODE flows with non-smooth velocity, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 144 (2014), 1191-1244. doi: 10.1017/S0308210513000085.

[5]

F. Bouchut and G. Crippa, Lagrangian flows for vector fields with gradient given by a singular integral, J. Hyper. Differential Equations, 10 (2013), 235-282. doi: 10.1142/S0219891613500100.

[6]

S. Caprino, C. Marchioro, E. Miot and M. Pulvirenti, On the attractive plasma-charge system in 2-d, Comm. Partial Differential Equations, 37 (2012), 1237-1272. doi: 10.1080/03605302.2011.653032.

[7]

G. Crippa and C. De Lellis, Estimates and regularity results for the DiPerna-Lions flow, J. Reine Angew. Math., 616 (2008), 15-46. doi: 10.1515/CRELLE.2008.016.

[8]

R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), 511-547. doi: 10.1007/BF01393835.

[9]

D. Jin and D. Dubin, Point vortex dynamics within a background vorticity patch, Phys. Fluids, 13 (2001), 677-691. doi: 10.1063/1.1343484.

[10]

M. C. Lopes Filho, E. Miot and H. J. Nussenzveig Lopes, Existence of a weak solution in $L^p$ to the vortex-wave system, J. Nonlinear Science, 21 (2011), 685-703. doi: 10.1007/s00332-011-9097-y.

[11]

M. C. Lopes Filho and H. J. Nussenzveig Lopes, An extension of Marchioro's bound on the growth of a vortex patch to flows with $L^p$ vorticity, SIAM J. Math. Anal., 29 (1998), 596-599 (electronic). doi: 10.1137/S0036141096310910.

[12]

C. Lacave and E. Miot, Uniqueness for the vortex-wave system when the vorticity is constant near the point vortex, SIAM J. Math. Anal., 41 (2009), 1138-1163. doi: 10.1137/080737629.

[13]

A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, {27}, Cambridge University Press, Cambridge, 2002.

[14]

C. Marchioro and M. Pulvirenti, On the vortex-wave system, in Mechanics, Analysis, and Geometry: 200 Years after Lagrange, Elsevier Science, Amsterdam, 1991, 79-95.

[15]

C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-4284-0.

[16]

P. Newton, The N-vortex problem on a sphere: Geophysical mechanisms that break integrability, Theor. Comput. Fluid Dyn., 24 (2010), 137-149.

[17]

D. Schecter, Two-dimensional vortex dynamics with background vorticity, in CP606, Non-Neutral Plasma Physics IV, Vol. 606, American Institute of Physics, 2002, 443-452. doi: 10.1063/1.1454315.

[18]

D. Schecter and D. Dubin, Theory and simulations of two-dimensional vortex motion driven by a background vorticity gradient, Phys. Fluids, 13 (2001), 1704-1723. doi: 10.1063/1.1359763.

[19]

E. Stein, Harmonic Analysis, Princeton University Press, 1993.

show all references

References:
[1]

L. Ambrosio, Transport equation and Cauchy problem for BV vector fields, Invent. Math., 158 (2004), 227-260. doi: 10.1007/s00222-004-0367-2.

[2]

L. Ambrosio, Transport equation and Cauchy problem for non-smooth vector fields, in Calculus of Variations and Nonlinear Partial Differential Equations, Lecture Notes in Math., 1927, Springer, Berlin, 2008, 1-41. doi: 10.1007/978-3-540-75914-0_1.

[3]

L. Ambrosio and G. Crippa, Existence, uniqueness, stability and differentiability properties of the flow associated to weakly differentiable vector fields, in Transport Equations and Multi-D Hyperbolic Conservation Laws, Lecture Notes of the Unione Matematica Italiana, 5, Springer, Berlin, 2008, 3-57. doi: 10.1007/978-3-540-76781-7_1.

[4]

L. Ambrosio and G. Crippa, Continuity equations and ODE flows with non-smooth velocity, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 144 (2014), 1191-1244. doi: 10.1017/S0308210513000085.

[5]

F. Bouchut and G. Crippa, Lagrangian flows for vector fields with gradient given by a singular integral, J. Hyper. Differential Equations, 10 (2013), 235-282. doi: 10.1142/S0219891613500100.

[6]

S. Caprino, C. Marchioro, E. Miot and M. Pulvirenti, On the attractive plasma-charge system in 2-d, Comm. Partial Differential Equations, 37 (2012), 1237-1272. doi: 10.1080/03605302.2011.653032.

[7]

G. Crippa and C. De Lellis, Estimates and regularity results for the DiPerna-Lions flow, J. Reine Angew. Math., 616 (2008), 15-46. doi: 10.1515/CRELLE.2008.016.

[8]

R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), 511-547. doi: 10.1007/BF01393835.

[9]

D. Jin and D. Dubin, Point vortex dynamics within a background vorticity patch, Phys. Fluids, 13 (2001), 677-691. doi: 10.1063/1.1343484.

[10]

M. C. Lopes Filho, E. Miot and H. J. Nussenzveig Lopes, Existence of a weak solution in $L^p$ to the vortex-wave system, J. Nonlinear Science, 21 (2011), 685-703. doi: 10.1007/s00332-011-9097-y.

[11]

M. C. Lopes Filho and H. J. Nussenzveig Lopes, An extension of Marchioro's bound on the growth of a vortex patch to flows with $L^p$ vorticity, SIAM J. Math. Anal., 29 (1998), 596-599 (electronic). doi: 10.1137/S0036141096310910.

[12]

C. Lacave and E. Miot, Uniqueness for the vortex-wave system when the vorticity is constant near the point vortex, SIAM J. Math. Anal., 41 (2009), 1138-1163. doi: 10.1137/080737629.

[13]

A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, {27}, Cambridge University Press, Cambridge, 2002.

[14]

C. Marchioro and M. Pulvirenti, On the vortex-wave system, in Mechanics, Analysis, and Geometry: 200 Years after Lagrange, Elsevier Science, Amsterdam, 1991, 79-95.

[15]

C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-4284-0.

[16]

P. Newton, The N-vortex problem on a sphere: Geophysical mechanisms that break integrability, Theor. Comput. Fluid Dyn., 24 (2010), 137-149.

[17]

D. Schecter, Two-dimensional vortex dynamics with background vorticity, in CP606, Non-Neutral Plasma Physics IV, Vol. 606, American Institute of Physics, 2002, 443-452. doi: 10.1063/1.1454315.

[18]

D. Schecter and D. Dubin, Theory and simulations of two-dimensional vortex motion driven by a background vorticity gradient, Phys. Fluids, 13 (2001), 1704-1723. doi: 10.1063/1.1359763.

[19]

E. Stein, Harmonic Analysis, Princeton University Press, 1993.

[1]

Zineb Hassainia, Taoufik Hmidi. Steady asymmetric vortex pairs for Euler equations. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1939-1969. doi: 10.3934/dcds.2020348

[2]

Gianluca Crippa, Elizaveta Semenova, Stefano Spirito. Strong continuity for the 2D Euler equations. Kinetic and Related Models, 2015, 8 (4) : 685-689. doi: 10.3934/krm.2015.8.685

[3]

José Antonio Carrillo, Marco Di Francesco, Antonio Esposito, Simone Fagioli, Markus Schmidtchen. Measure solutions to a system of continuity equations driven by Newtonian nonlocal interactions. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 1191-1231. doi: 10.3934/dcds.2020075

[4]

Yachun Li, Shengguo Zhu. On regular solutions of the $3$D compressible isentropic Euler-Boltzmann equations with vacuum. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3059-3086. doi: 10.3934/dcds.2015.35.3059

[5]

Franco Flandoli, Dejun Luo. Euler-Lagrangian approach to 3D stochastic Euler equations. Journal of Geometric Mechanics, 2019, 11 (2) : 153-165. doi: 10.3934/jgm.2019008

[6]

Lorena Bociu, Petronela Radu, Daniel Toundykov. Errata: Regular solutions of wave equations with super-critical sources and exponential-to-logarithmic damping. Evolution Equations and Control Theory, 2014, 3 (2) : 349-354. doi: 10.3934/eect.2014.3.349

[7]

Lorena Bociu, Petronela Radu, Daniel Toundykov. Regular solutions of wave equations with super-critical sources and exponential-to-logarithmic damping. Evolution Equations and Control Theory, 2013, 2 (2) : 255-279. doi: 10.3934/eect.2013.2.255

[8]

Isaac A. García, Jaume Giné, Susanna Maza. Linearization of smooth planar vector fields around singular points via commuting flows. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1415-1428. doi: 10.3934/cpaa.2008.7.1415

[9]

Lijun Zhang, Yixia Shi, Maoan Han. Smooth and singular traveling wave solutions for the Serre-Green-Naghdi equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2917-2926. doi: 10.3934/dcdss.2020217

[10]

Harish S. Bhat, Razvan C. Fetecau. Lagrangian averaging for the 1D compressible Euler equations. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 979-1000. doi: 10.3934/dcdsb.2006.6.979

[11]

Houyu Jia, Xiaofeng Liu. Local existence and blowup criterion of the Lagrangian averaged Euler equations in Besov spaces. Communications on Pure and Applied Analysis, 2008, 7 (4) : 845-852. doi: 10.3934/cpaa.2008.7.845

[12]

Daniel Han-Kwan. $L^1$ averaging lemma for transport equations with Lipschitz force fields. Kinetic and Related Models, 2010, 3 (4) : 669-683. doi: 10.3934/krm.2010.3.669

[13]

Zhigang Wang, Lei Wang, Yachun Li. Renormalized entropy solutions for degenerate parabolic-hyperbolic equations with time-space dependent coefficients. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1163-1182. doi: 10.3934/cpaa.2013.12.1163

[14]

Okihiro Sawada. Analytic rates of solutions to the Euler equations. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1409-1415. doi: 10.3934/dcdss.2013.6.1409

[15]

Jingwei Hu, Shi Jin. On kinetic flux vector splitting schemes for quantum Euler equations. Kinetic and Related Models, 2011, 4 (2) : 517-530. doi: 10.3934/krm.2011.4.517

[16]

Bouthaina Abdelhedi. Existence of periodic solutions of a system of damped wave equations in thin domains. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 767-800. doi: 10.3934/dcds.2008.20.767

[17]

Takashi Narazaki. Global solutions to the Cauchy problem for the weakly coupled system of damped wave equations. Conference Publications, 2009, 2009 (Special) : 592-601. doi: 10.3934/proc.2009.2009.592

[18]

Gui-Qiang Chen, Jun Chen, Mikhail Feldman. Transonic flows with shocks past curved wedges for the full Euler equations. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4179-4211. doi: 10.3934/dcds.2016.36.4179

[19]

Holger Dullin, Yuri Latushkin, Robert Marangell, Shibi Vasudevan, Joachim Worthington. Instability of unidirectional flows for the 2D α-Euler equations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2051-2079. doi: 10.3934/cpaa.2020091

[20]

Qiang Liu, Zhichang Guo, Chunpeng Wang. Renormalized solutions to a reaction-diffusion system applied to image denoising. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1839-1858. doi: 10.3934/dcdsb.2016025

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (139)
  • HTML views (0)
  • Cited by (3)

[Back to Top]