\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Moving recurrent properties for the doubling map on the unit interval

Abstract Related Papers Cited by
  • Let $(X,T,\mathcal{B}, \mu)$ be a measure-theoretical dynamical system with a compatible metric $d.$ Following Boshernitzan, call a point $x\in X$ is $\{n_{k}\}$-moving recurrent if $$\inf_{k\geq1} d\big(T^{n_{k}}x, \ T^{n_k+{k}}x\big)=0,$$ where $\{n_{k}\}_{k\in \mathbb{N}}$ is a given sequence of integers. It was asked whether the set of $\{n_{k}\}$-moving recurrent points is of full $\mu$-measure. In this paper, we restrict our attention to the doubling map and quantify the size of the set of $\{n_{k}\}$-moving recurrent points in the sense of measure (a class of $2$-fold mixing measures) and Hausdorff dimension.
    Mathematics Subject Classification: Primary: 11K55, 37D20; Secondary: 28A80.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. Akin, Recurrence in Topological Dynamics, Furstenberg Families and Ellis Actions, Plenum Press, New York-London, 1997.doi: 10.1007/978-1-4757-2668-8.

    [2]

    L. Barreira and B. Saussol, Hausdoff dimension of measures via Poincaré Recurrence, Comm. Math. Phys., 219 (2001), 443-463.doi: 10.1007/s002200100427.

    [3]

    M. Boshernitzan, Quantitative recurrence results, Invent. Math., 113 (1993), 617-631.doi: 10.1007/BF01244320.

    [4]

    M. Boshernitzan and E. Glasner, On two recurrence problems, Fund. Math., 206 (2009), 113-130.doi: 10.4064/fm206-0-7.

    [5]

    K. J. Falconer, Fractal Geometry, Mathematical Foundations and Application, John Wiley and Sons, 1990.doi: 10.1002/0470013850.

    [6]

    H. Fursternberg, Poincaré recurrence and number theory, Bull. Amer. Math. Soc., 5 (1981), 211-234.doi: 10.1090/S0273-0979-1981-14932-6.

    [7]

    H. Fursternberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton university press, Princeton, N.J., 1981.doi: 10.1090/s0273-0979-1986-15451-0.

    [8]

    E. Glasner, Classifying dynamical systems by their recurrence properties, Topol. Methods Nonlinear Anal., 24 (2004), 21-40.

    [9]

    S. Grivaux and M. Roginskaya, Some new examples of recurrence and non-recurrence sets for products of rotations on the unit circle, Czechoslovak Math. J., 63 (2013), 603-627.doi: 10.1007/s10587-013-0043-z.

    [10]

    S. Grivaux, Non-recurrence sets for weakly mixing linear dynamical systems, Ergodic Theory Dynam. Systems, 34 (2014), 132-152.doi: 10.1017/etds.2012.116.

    [11]

    R. Hill and S. Velani, The shrinking target problems for matrix transformations of tori, J. London Math. Soc. (2), 60 (1999), 381-398.doi: 10.1112/S0024610799007681.

    [12]

    E. Manfred and W. Thomas, Ergodic Theory with a View Towards Number Theory, Graduate Texts in Mathematics, 259, Springer-Verlag London, Ltd., London, 2011.doi: 10.1007/978-0-85729-021-2.

    [13]

    B. Tan and B. W. Wang, Quantitative reccurrence properties for beta-dynamical system, Adv. Math., 228 (2011), 2071-2097.doi: 10.1016/j.aim.2011.06.034.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(120) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return