-
Previous Article
Asymptotic analysis of charge conserving Poisson-Boltzmann equations with variable dielectric coefficients
- DCDS Home
- This Issue
-
Next Article
Homoclinic orbits with many loops near a $0^2 i\omega$ resonant fixed point of Hamiltonian systems
Homotopy invariants methods in the global dynamics of strongly damped wave equation
1. | Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń |
References:
[1] |
S. Ahmad, A nonstandard resonance problem for ordinary differential equations, Trans. Amer. Math. Soc., 323 (1991), 857-875.
doi: 10.1090/S0002-9947-1991-1010407-9. |
[2] |
A. Ambrosetti and G. Mancini, Theorems of existence and multiplicity for nonlinear elliptic problems with noninvertible linear part, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (1978), 15-28. |
[3] |
H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory, Monographs in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 1995.
doi: 10.1007/978-3-0348-9221-6. |
[4] |
J. Arrieta, R. Pardo and A. Rodriguez-Bernal, Equilibria and global dynamics of a problem with bifurcation from infinity, J. Differential Equations, 246 (2009), 2055-2080.
doi: 10.1016/j.jde.2008.09.002. |
[5] |
P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong'' resonance at infinity, Nonlinear Anal., 7 (1983), 981-1012.
doi: 10.1016/0362-546X(83)90115-3. |
[6] |
H. Brézis and L. Nirenberg, Characterizations of the ranges of some nonlinear operators and applications to boundary value problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (1978), 225-326. |
[7] |
A. N. Carvalho and J. W. Cholewa, Attractors for strongly damped wave equations with critical nonlinearities, Pacific J. Math., 207 (2002), 287-310.
doi: 10.2140/pjm.2002.207.287. |
[8] |
J. W. Cholewa and T. Dłotko, Global Attractors in Abstract Parabolic Problems, London Mathematical Society Lecture Note Series, vol. 278, Cambridge University Press, Cambridge, 2000.
doi: 10.1017/CBO9780511526404. |
[9] |
C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. |
[10] |
A. Ćwiszewski, Periodic solutions of damped hyperbolic equations at resonance: A translation along trajectories approach, Differential Integral Equations, 24 (2011), 767-786. |
[11] |
A. Ćwiszewski and P. Kokocki, Krasnosel\cprime skii type formula and translation along trajectories method for evolution equations, Discrete Contin. Dyn. Syst., 22 (2008), 605-628.
doi: 10.3934/dcds.2008.22.605. |
[12] |
A. Ćwiszewski and K. P. Rybakowski, Singular dynamics of strongly damped beam equation, J. Differential Equations, 247 (2009), 3202-3233.
doi: 10.1016/j.jde.2009.09.006. |
[13] |
D. Daners and P. K. Medina, Abstract Evolution Equations, Periodic Problems and Applications, Pitman Research Notes in Mathematics Series, 279, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1992. |
[14] |
K. J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000. |
[15] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25, American Mathematical Society, Providence, RI, 1988. |
[16] |
J. K. Hale, L. T. Magalhaes and W. M. Oliva, Dynamics in Infinite Dimensions, Applied Mathematical Sciences, 47, Springer-Verlag, New York, 2002.
doi: 10.1007/b100032. |
[17] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin, 1981. |
[18] |
P. Hess, Nonlinear perturbations of linear elliptic and parabolic problems at resonance: Existence of multiple solutions, Ann. Scuola Norm. Sup. Pisa, 5 (1978), 527-537. |
[19] |
E. Hille and R. Phillips, Functional Analysis and Semi-Groups, Colloquium Publications, 31, American Mathematical Society, Providence, RI, 1957. |
[20] |
P. Kokocki, Averaging principle and periodic solutions for nonlinear evolution equations at resonance, Nonlinear Analysis: Theory, Methods and Applications, 85 (2013), 253-278.
doi: 10.1016/j.na.2013.02.030. |
[21] |
P. Kokocki, Effect of resonance on the existence of periodic solutions for strongly damped wave equation, Nonlinear Analysis: Theory, Methods and Applications, 125 (2015), 167-200.
doi: 10.1016/j.na.2015.05.012. |
[22] |
E. M. Landesman and A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech., 19 (1970), 609-623. |
[23] |
A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev., 32 (1990), 537-578.
doi: 10.1137/1032120. |
[24] |
A. C. Lazer and P. J. McKenna, Open problems in nonlinear ordinary boundary value problems arising from the study of large-amplitude periodic oscillations in suspension bridges, World Congress of Nonlinear Analysts '92, Vol. I-IV (Tampa, FL, 1992), de Gruyter, Berlin, 1996, 349-358. |
[25] |
P. Massatt, Limiting behavior for strongly damped nonlinear wave equations, J. Differential Equations, 48 (1983), 334-349.
doi: 10.1016/0022-0396(83)90098-0. |
[26] |
J. Mawhin and J. R. Ward, Bounded solutions of some second order nonlinear differential equations, J. London Math. Soc., 58 (1998), 733-747.
doi: 10.1112/S0024610798006784. |
[27] |
R. Ortega and A. Tineo, Resonance and non-resonance in a problem of boundedness, Proc. Amer. Math. Soc., 124 (1996), 2089-2096.
doi: 10.1090/S0002-9939-96-03457-0. |
[28] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[29] |
K. P. Rybakowski, On the homotopy index for infinite-dimensional semiflows, Trans. Amer. Math. Soc., 269 (1982), 351-382.
doi: 10.1090/S0002-9947-1982-0637695-7. |
[30] |
K. P. Rybakowski, Nontrivial solutions of elliptic boundary value problems with resonance at zero, Ann. Mat. Pura Appl., 139 (1985), 237-277.
doi: 10.1007/BF01766857. |
[31] |
K. P. Rybakowski, The Homotopy Index and Partial Differential Equations, Universitext, Springer-Verlag, Berlin, 1987.
doi: 10.1007/978-3-642-72833-4. |
[32] |
K. P. Rybakowski, Trajectories joining critical points of nonlinear parabolic and hyperbolic partial differential equations, J. Differential Equations, 51 (1984), 182-212.
doi: 10.1016/0022-0396(84)90107-4. |
[33] |
D. Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc., 291 (1985), 1-41.
doi: 10.1090/S0002-9947-1985-0797044-3. |
[34] |
M. Schechter, Nonlinear elliptic boundary value problems at resonance, Nonlinear Anal., 14 (1990), 889-903.
doi: 10.1016/0362-546X(90)90027-E. |
[35] |
J. Smoller, Shock Waves and Reaction-Diffusion Equations, Grundlehren der Mathematischen Wissenschaften, vol. 258, Springer-Verlag, New York, 1983. |
[36] |
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. |
[37] |
J. Valdo and A. Gonçalves, On bounded nonlinear perturbations of an elliptic equation at resonance, Nonlinear Anal., 5 (1981), 57-60.
doi: 10.1016/0362-546X(81)90070-5. |
show all references
References:
[1] |
S. Ahmad, A nonstandard resonance problem for ordinary differential equations, Trans. Amer. Math. Soc., 323 (1991), 857-875.
doi: 10.1090/S0002-9947-1991-1010407-9. |
[2] |
A. Ambrosetti and G. Mancini, Theorems of existence and multiplicity for nonlinear elliptic problems with noninvertible linear part, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (1978), 15-28. |
[3] |
H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory, Monographs in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 1995.
doi: 10.1007/978-3-0348-9221-6. |
[4] |
J. Arrieta, R. Pardo and A. Rodriguez-Bernal, Equilibria and global dynamics of a problem with bifurcation from infinity, J. Differential Equations, 246 (2009), 2055-2080.
doi: 10.1016/j.jde.2008.09.002. |
[5] |
P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong'' resonance at infinity, Nonlinear Anal., 7 (1983), 981-1012.
doi: 10.1016/0362-546X(83)90115-3. |
[6] |
H. Brézis and L. Nirenberg, Characterizations of the ranges of some nonlinear operators and applications to boundary value problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (1978), 225-326. |
[7] |
A. N. Carvalho and J. W. Cholewa, Attractors for strongly damped wave equations with critical nonlinearities, Pacific J. Math., 207 (2002), 287-310.
doi: 10.2140/pjm.2002.207.287. |
[8] |
J. W. Cholewa and T. Dłotko, Global Attractors in Abstract Parabolic Problems, London Mathematical Society Lecture Note Series, vol. 278, Cambridge University Press, Cambridge, 2000.
doi: 10.1017/CBO9780511526404. |
[9] |
C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. |
[10] |
A. Ćwiszewski, Periodic solutions of damped hyperbolic equations at resonance: A translation along trajectories approach, Differential Integral Equations, 24 (2011), 767-786. |
[11] |
A. Ćwiszewski and P. Kokocki, Krasnosel\cprime skii type formula and translation along trajectories method for evolution equations, Discrete Contin. Dyn. Syst., 22 (2008), 605-628.
doi: 10.3934/dcds.2008.22.605. |
[12] |
A. Ćwiszewski and K. P. Rybakowski, Singular dynamics of strongly damped beam equation, J. Differential Equations, 247 (2009), 3202-3233.
doi: 10.1016/j.jde.2009.09.006. |
[13] |
D. Daners and P. K. Medina, Abstract Evolution Equations, Periodic Problems and Applications, Pitman Research Notes in Mathematics Series, 279, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1992. |
[14] |
K. J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000. |
[15] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25, American Mathematical Society, Providence, RI, 1988. |
[16] |
J. K. Hale, L. T. Magalhaes and W. M. Oliva, Dynamics in Infinite Dimensions, Applied Mathematical Sciences, 47, Springer-Verlag, New York, 2002.
doi: 10.1007/b100032. |
[17] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin, 1981. |
[18] |
P. Hess, Nonlinear perturbations of linear elliptic and parabolic problems at resonance: Existence of multiple solutions, Ann. Scuola Norm. Sup. Pisa, 5 (1978), 527-537. |
[19] |
E. Hille and R. Phillips, Functional Analysis and Semi-Groups, Colloquium Publications, 31, American Mathematical Society, Providence, RI, 1957. |
[20] |
P. Kokocki, Averaging principle and periodic solutions for nonlinear evolution equations at resonance, Nonlinear Analysis: Theory, Methods and Applications, 85 (2013), 253-278.
doi: 10.1016/j.na.2013.02.030. |
[21] |
P. Kokocki, Effect of resonance on the existence of periodic solutions for strongly damped wave equation, Nonlinear Analysis: Theory, Methods and Applications, 125 (2015), 167-200.
doi: 10.1016/j.na.2015.05.012. |
[22] |
E. M. Landesman and A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech., 19 (1970), 609-623. |
[23] |
A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev., 32 (1990), 537-578.
doi: 10.1137/1032120. |
[24] |
A. C. Lazer and P. J. McKenna, Open problems in nonlinear ordinary boundary value problems arising from the study of large-amplitude periodic oscillations in suspension bridges, World Congress of Nonlinear Analysts '92, Vol. I-IV (Tampa, FL, 1992), de Gruyter, Berlin, 1996, 349-358. |
[25] |
P. Massatt, Limiting behavior for strongly damped nonlinear wave equations, J. Differential Equations, 48 (1983), 334-349.
doi: 10.1016/0022-0396(83)90098-0. |
[26] |
J. Mawhin and J. R. Ward, Bounded solutions of some second order nonlinear differential equations, J. London Math. Soc., 58 (1998), 733-747.
doi: 10.1112/S0024610798006784. |
[27] |
R. Ortega and A. Tineo, Resonance and non-resonance in a problem of boundedness, Proc. Amer. Math. Soc., 124 (1996), 2089-2096.
doi: 10.1090/S0002-9939-96-03457-0. |
[28] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[29] |
K. P. Rybakowski, On the homotopy index for infinite-dimensional semiflows, Trans. Amer. Math. Soc., 269 (1982), 351-382.
doi: 10.1090/S0002-9947-1982-0637695-7. |
[30] |
K. P. Rybakowski, Nontrivial solutions of elliptic boundary value problems with resonance at zero, Ann. Mat. Pura Appl., 139 (1985), 237-277.
doi: 10.1007/BF01766857. |
[31] |
K. P. Rybakowski, The Homotopy Index and Partial Differential Equations, Universitext, Springer-Verlag, Berlin, 1987.
doi: 10.1007/978-3-642-72833-4. |
[32] |
K. P. Rybakowski, Trajectories joining critical points of nonlinear parabolic and hyperbolic partial differential equations, J. Differential Equations, 51 (1984), 182-212.
doi: 10.1016/0022-0396(84)90107-4. |
[33] |
D. Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc., 291 (1985), 1-41.
doi: 10.1090/S0002-9947-1985-0797044-3. |
[34] |
M. Schechter, Nonlinear elliptic boundary value problems at resonance, Nonlinear Anal., 14 (1990), 889-903.
doi: 10.1016/0362-546X(90)90027-E. |
[35] |
J. Smoller, Shock Waves and Reaction-Diffusion Equations, Grundlehren der Mathematischen Wissenschaften, vol. 258, Springer-Verlag, New York, 1983. |
[36] |
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. |
[37] |
J. Valdo and A. Gonçalves, On bounded nonlinear perturbations of an elliptic equation at resonance, Nonlinear Anal., 5 (1981), 57-60.
doi: 10.1016/0362-546X(81)90070-5. |
[1] |
Marian Gidea. Leray functor and orbital Conley index for non-invariant sets. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 617-630. doi: 10.3934/dcds.1999.5.617 |
[2] |
Todd Young. A result in global bifurcation theory using the Conley index. Discrete and Continuous Dynamical Systems, 1996, 2 (3) : 387-396. doi: 10.3934/dcds.1996.2.387 |
[3] |
M. C. Carbinatto, K. Mischaikow. Horseshoes and the Conley index spectrum - II: the theorem is sharp. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 599-616. doi: 10.3934/dcds.1999.5.599 |
[4] |
Jintao Wang, Desheng Li, Jinqiao Duan. On the shape Conley index theory of semiflows on complete metric spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1629-1647. doi: 10.3934/dcds.2016.36.1629 |
[5] |
Anna Go??biewska, S?awomir Rybicki. Equivariant Conley index versus degree for equivariant gradient maps. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 985-997. doi: 10.3934/dcdss.2013.6.985 |
[6] |
Ketty A. De Rezende, Mariana G. Villapouca. Discrete conley index theory for zero dimensional basic sets. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1359-1387. doi: 10.3934/dcds.2017056 |
[7] |
Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002 |
[8] |
Robert Skiba, Nils Waterstraat. The index bundle and multiparameter bifurcation for discrete dynamical systems. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5603-5629. doi: 10.3934/dcds.2017243 |
[9] |
Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098 |
[10] |
Michihiro Hirayama. Periodic probability measures are dense in the set of invariant measures. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1185-1192. doi: 10.3934/dcds.2003.9.1185 |
[11] |
Ji Li, Kening Lu, Peter W. Bates. Invariant foliations for random dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3639-3666. doi: 10.3934/dcds.2014.34.3639 |
[12] |
Tong Li, Hailiang Liu. Critical thresholds in a relaxation system with resonance of characteristic speeds. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 511-521. doi: 10.3934/dcds.2009.24.511 |
[13] |
Ivan Werner. Equilibrium states and invariant measures for random dynamical systems. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1285-1326. doi: 10.3934/dcds.2015.35.1285 |
[14] |
Nils Ackermann, Thomas Bartsch, Petr Kaplický. An invariant set generated by the domain topology for parabolic semiflows with small diffusion. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 613-626. doi: 10.3934/dcds.2007.18.613 |
[15] |
Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144 |
[16] |
P.K. Newton. The dipole dynamical system. Conference Publications, 2005, 2005 (Special) : 692-699. doi: 10.3934/proc.2005.2005.692 |
[17] |
Xin Li, Wenxian Shen, Chunyou Sun. Invariant measures for complex-valued dissipative dynamical systems and applications. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2427-2446. doi: 10.3934/dcdsb.2017124 |
[18] |
Grzegorz Łukaszewicz, James C. Robinson. Invariant measures for non-autonomous dissipative dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4211-4222. doi: 10.3934/dcds.2014.34.4211 |
[19] |
Gary Froyland, Philip K. Pollett, Robyn M. Stuart. A closing scheme for finding almost-invariant sets in open dynamical systems. Journal of Computational Dynamics, 2014, 1 (1) : 135-162. doi: 10.3934/jcd.2014.1.135 |
[20] |
Hahng-Yun Chu, Se-Hyun Ku, Jong-Suh Park. Conley's theorem for dispersive systems. Discrete and Continuous Dynamical Systems - S, 2015, 8 (2) : 313-321. doi: 10.3934/dcdss.2015.8.313 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]