\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On some variational problems set on domains tending to infinity

Abstract Related Papers Cited by
  • Let $\Omega_\ell = \ell\omega_1 \times \omega_2$ where $\omega_1 \subset \mathbb{R}^p$ and $\omega_2 \subset \mathbb{R}^{n-p}$ are assumed to be open and bounded. We consider the following minimization problem: $$E_{\Omega_\ell}(u_\ell) = \min_{u\in W_0^{1,q}(\Omega_\ell)}E_{\Omega_\ell}(u)$$ where $E_{\Omega_\ell}(u) = \int_{\Omega_\ell}F(\nabla u)-fu$, $F$ is a convex function and $f\in L^{q'}(\omega_2)$. We are interested in studying the asymptotic behavior of the solution $u_\ell$ as $\ell$ tends to infinity.
    Mathematics Subject Classification: Primary: 35B40, 35J20, 35J25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Borwein, A. J. Guirao, P. Hajek and J. Vanderwerff, Uniformly convex functions on Banach spaces, Proc. Amer. Math. Soc., 137 (2009), 1081-1091.doi: 10.1090/S0002-9939-08-09630-5.

    [2]

    P. G. Ciarlet, Introduction to Linear Shell Theory, Series in Applied Mathematics, (North-Holland, Amsterdam,) 1, 1998.

    [3]

    M. Chipot, $l$ Goes to Plus Infinity, Birkhäuser, 2002.doi: 10.1007/978-3-0348-8173-9.

    [4]

    M. Chipot, to appear.

    [5]

    M. Chipot and S. Mardare, Asymptotic behaviour of the Stokes problem in cylinders becoming unbounded in one direction, J. Math. Pures Appl., 90 (2013), 133-159.doi: 10.1016/j.matpur.2008.04.002.

    [6]

    M. Chipot and A. Rougirel, On the asymptotic behaviour of the solution of elliptic problems in cylindrical domains becoming unbounded, Commun. Contemp. Math., 4 (2002), 15-44.doi: 10.1142/S0219199702000555.

    [7]

    M. Chipot and A. Rougirel, On the asymptotic behaviour of the eigenmodes for elliptic problems in domain becoming unbounded, Trans. AMS, 360 (2008), 3579-3602.doi: 10.1090/S0002-9947-08-04361-4.

    [8]

    M. Chipot and A. Rougirel, Remarks on the asymptotic behaviour of the solution to parabolic problems in domains becoming unbounded, Nonlinear Analysis, 47 (2001), 3-11.doi: 10.1016/S0362-546X(01)00151-1.

    [9]

    M. Chipot, P. Roy and I. Shafrir, Asymptotics of eigenstates of elliptic problems with mixed boundary data on domains tending to infinity, Asymptotic Analysis, 85 (2013), 199-227.

    [10]

    M. Chipot and K. Yeressian, Exponential rates of convergence by an iteration technique, C. R. Math. Acad. Sci., Paris, 346 (2008), 21-26.doi: 10.1016/j.crma.2007.12.004.

    [11]

    M. Chipot and K. Yeressian, On the asymptotic behavior of variational inequalities set in cylinders, Discrete Contin. Dyn. Syst., 33 (2013), 4875-4890.doi: 10.3934/dcds.2013.33.4875.

    [12]

    M. Chipot and K. Yeressian, Asymptotic behaviour of the solution to variational inequalities with joint constraints on its value and its gradient, Contemporary Mathematics, 594 (2013), 137-154.doi: 10.1090/conm/594/11797.

    [13]

    M. Chipot and Y. Xie, On the asymptotic behaviour of the p-Laplace equation in cylinders becoming unbounded, Nonlinear partial differential equations and their applications, GAKUTO Internat. Ser. Math. Sci. Appl., Gakkotosho, Tokyo, 20 (2004), 16-27.

    [14]

    I. Chowdhury and P. Roy, On the asymptotic analysis of problems involving fractional laplacian in cylindrical domains tending to infinity, preprint, http://arxiv.org/abs/1509.06697

    [15]

    I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland Publishing Co., New York, 1976.

    [16]

    L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, AMS, 1998.

    [17]

    L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, 1992.

    [18]

    D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1983.doi: 10.1007/978-3-642-61798-0.

    [19]

    S. Guesmia, Some convergence results for quasilinear parabolic boundary value problems in cylindrical domains of large size, Nonlinear Anal., 70 (2009), 3320-3331.doi: 10.1016/j.na.2008.04.036.

    [20]

    S. Guesmia, Some results on the asymptotic behaviour for hyperbolic problems in cylindrical domains becoming unbounded, J. Math. Anal. Appl., 341 (2008), 1190-1212.doi: 10.1016/j.jmaa.2007.11.001.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(174) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return