Advanced Search
Article Contents
Article Contents

Periodic shadowing of vector fields

Abstract Related Papers Cited by
  • A vector field has the periodic shadowing property if for any $\varepsilon>0$ there is $d>0$ such that, for any periodic $d$-pseudo orbit $g$ there exists a periodic orbit or a singularity in which $g$ is $\varepsilon$-shadowed. In this paper, we show that a vector field is in the $C^1$ interior of the set of vector fields satisfying the periodic shadowing property if and only if it is $\Omega$-stable. More precisely, we prove that the $C^1$ interior of the set of vector fields satisfying the orbital periodic shadowing property is a subset of the set of $\Omega$-stable vector fields.
    Mathematics Subject Classification: Primary: 37C50, 37C20; Secondary: 37J45.


    \begin{equation} \\ \end{equation}
  • [1]

    D. V. Anosov, On a class of invariant sets of smooth dynamical systems, Proc. 5th Int. Conf. on Nonlin. Oscill., Kiev, 2 (1970), 39-45.


    C. Bonatti, M. Li and D. Yang, A robustly chain transitive attractor with singularities of different indices, J. Inst. Math. Jussieu, 12 (2013), 449-501.doi: 10.1017/S1474748012000710.


    R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math., Vol. 470, Springer, Berlin, 1975.


    S. Gan, M. Li and S. B. Tikhomirov, Oriented shadowing property and $\Omega$-stability for vector fields, J. Dynam. Differential Equations, 28 (2016), 225-237.doi: 10.1007/s10884-014-9399-5.


    S. Gan and L. Wen, Nonsingular star flows satisfy Axiom A and the nocycle condition, Invent. Math., 164 (2006), 279-315.doi: 10.1007/s00222-005-0479-3.


    K. Lee and K. Sakai, Structural stability of vector fields with shadowing, J. Differential Equations, 232 (2007), 303-313.doi: 10.1016/j.jde.2006.08.012.


    A. Morimoto, The Method of Pseudo-Orbit Tracing and Stability of Dynamical Systems, Sem. Note, Vol. 39, Tokyo Univ., 1979.


    A. V. Osipov, S. Yu. Pilyugin and S. B. Tikhomirov, Periodic Shadowing and $\Omega$-stability, Regul. Chaotic Dyn., 15 (2010), 404-417.doi: 10.1134/S1560354710020255.


    K. J. Palmer, Shadowing in Dynamical Systems: Theory and Applications, Kluwer, 2000.doi: 10.1007/978-1-4757-3210-8.


    K. J. Palmer, S. Yu. Pilyugin and S. B. Tikhomirov, Lipschitz shadowing and structural stability of flows, J. Differential Equations, 252 (2012), 1723-1747.doi: 10.1016/j.jde.2011.07.026.


    S. Yu. Pilyugin, Shadowing in Dynamical Systems, Lecture Notes in Math., Vol. 1706, Springer, 1999.


    S. Yu. Pilyugin, Variational shadowing, Discrete Contin. Dyn. Syst. B, 14 (2010), 733-737.doi: 10.3934/dcdsb.2010.14.733.


    S. Yu. Pilyugin and S. B. Tikhomirov, Vector fields with the oriented shadowing property, J. Differential Equations, 248 (2010), 1345-1375.doi: 10.1016/j.jde.2009.09.024.


    S. Yu. Pilyugin and S. B. Tikhomirov, Lipschitz shadowing implies structural stability, Nonlinearity, 23 (2010), 2509-2515.doi: 10.1088/0951-7715/23/10/009.


    C. Robinson, Stability theorems and hyperbolicity in dynamical systems, Rocky Mountain J. Math., 7 (1977), 425-437.doi: 10.1216/RMJ-1977-7-3-425.


    K. Sakai, Pseudo orbit tracing property and strong transversality of diffeomorphisms on closed manifolds, Osaka J. Math., 31 (1994), 373-386.


    K. Sawada, Extended $f$-orbits are approximated by orbits, Nagoya Math. J., 79 (1980), 33-45.


    L. Wen, A uniform $C^1$ connecting lemma, Discrete Contin. Dyn. Syst., 8 (2002), 257-265.doi: 10.3934/dcds.2002.8.257.


    L. Wen and Z. Xia, $C^1$ connecting lemmas, Trans. Amer. Math. Soc., 352 (2000), 5213-5230.doi: 10.1090/S0002-9947-00-02553-8.


    S. Zhu, S. Gan and L. Wen, Indices of singularities of robustly transitive sets, Discrete Cont. Dyn. Syst., 21 (2008), 945-957.doi: 10.3934/dcds.2008.21.945.

  • 加载中

Article Metrics

HTML views() PDF downloads(159) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint