-
Previous Article
Stability of stationary wave maps from a curved background to a sphere
- DCDS Home
- This Issue
-
Next Article
The Gardner equation and the stability of multi-kink solutions of the mKdV equation
Global well-posedness of axisymmetric Navier-Stokes equations with one slow variable
1. | College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China |
2. | Shanghai Key Laboratory for Contemporary Applied Mathematics, School of Mathematical Sciences, Fudan University, Shanghai 200433 |
References:
[1] |
M. Cannone, Chapter 3: Harmonic analysis tools for solving the incompressible navier-stokes equations,, in Handbook of Mathmatical Fluid Dynamics, 3 (2004), 161.
|
[2] |
M. Cannone, Y. Meyer and F. Planchon, Solutions auto-similaires des équations de Navier-Stokes,, Sémin. Équations aux Dérivées Partielles de I'École polytechnique, 8 (1994).
|
[3] |
D. Chae and J. Lee, On the regularity of the axisymmetric solutions of the Navier-Stokes equations,, Math. Z., 239 (2002), 645.
doi: 10.1007/s002090100317. |
[4] |
C. C. Chen, R. M. Strain, T. P. Tsai and H. T. Yau, Lower bounds on the blow-up rate of the axisymmetric Navier-Stokes equations. II,, Comm. Partial Differential Equations, 34 (2009), 203.
doi: 10.1080/03605300902793956. |
[5] |
Clay Mathematics Institute, Available, from: , (). Google Scholar |
[6] |
H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I,, Arch. Rational Mech Anal., 16 (1964), 269.
doi: 10.1007/BF00276188. |
[7] |
Y. Giga and T. Miyakama, Solutions in $L^r$ of the Navier-Stokes initial value problem,, Arch. Ration. Mech. Anal., 89 (1985), 267.
doi: 10.1007/BF00276875. |
[8] |
T. Y. Hou, Z. Lei and C. Li, Global regularity of the 3D axi-symmetric Navier-Stokes equations with anisotropic data,, Comm. Partial Differential Equations, 33 (2008), 1622.
doi: 10.1080/03605300802108057. |
[9] |
T. Y. Hou and C. Li, Dynamic stability of the 3D axi-symmetric Navier-Stokes equations with swirl,, Comm. Pure Appl. Math., 61 (2008), 661.
doi: 10.1002/cpa.20212. |
[10] |
S. Leonardi, J. Málek, J. Nečas and M. Pokorný, On axially symmetric flows in $ R^3$,, Z. Anal. Anwendungen, 18 (1999), 639.
doi: 10.4171/ZAA/903. |
[11] |
O. A. Ladyzhenskaya, Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry,, Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7 (1968), 155.
|
[12] |
J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problems que pose I'hydrodynamique,, Journal Math. Pures et Appliquées, 12 (1933), 1. Google Scholar |
[13] |
J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1934), 193.
doi: 10.1007/BF02547354. |
[14] |
H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations,, Adv. Math., 157 (2001), 22.
doi: 10.1006/aima.2000.1937. |
[15] |
T. Kato, Strong $L^p$-solutions of the Navier-Stokes equations in $\mathbbR^m$ with applications to weak solutions,, Math. Z., 187 (1984), 471.
doi: 10.1007/BF01174182. |
[16] |
A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow,, Cambridge Texts in Applied Mathematics, (2002).
|
[17] |
M. R. Ukhovskii and V. I. Iudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space,, J. Appl. Math. Mech., 32 (1968), 52.
doi: 10.1016/0021-8928(68)90147-0. |
[18] |
F. B. Weissler, The Navier-Stokes initial value problem in $L^p$,, Arch. Ration. Mech. Anal., 74 (1980), 219.
doi: 10.1007/BF00280539. |
show all references
References:
[1] |
M. Cannone, Chapter 3: Harmonic analysis tools for solving the incompressible navier-stokes equations,, in Handbook of Mathmatical Fluid Dynamics, 3 (2004), 161.
|
[2] |
M. Cannone, Y. Meyer and F. Planchon, Solutions auto-similaires des équations de Navier-Stokes,, Sémin. Équations aux Dérivées Partielles de I'École polytechnique, 8 (1994).
|
[3] |
D. Chae and J. Lee, On the regularity of the axisymmetric solutions of the Navier-Stokes equations,, Math. Z., 239 (2002), 645.
doi: 10.1007/s002090100317. |
[4] |
C. C. Chen, R. M. Strain, T. P. Tsai and H. T. Yau, Lower bounds on the blow-up rate of the axisymmetric Navier-Stokes equations. II,, Comm. Partial Differential Equations, 34 (2009), 203.
doi: 10.1080/03605300902793956. |
[5] |
Clay Mathematics Institute, Available, from: , (). Google Scholar |
[6] |
H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I,, Arch. Rational Mech Anal., 16 (1964), 269.
doi: 10.1007/BF00276188. |
[7] |
Y. Giga and T. Miyakama, Solutions in $L^r$ of the Navier-Stokes initial value problem,, Arch. Ration. Mech. Anal., 89 (1985), 267.
doi: 10.1007/BF00276875. |
[8] |
T. Y. Hou, Z. Lei and C. Li, Global regularity of the 3D axi-symmetric Navier-Stokes equations with anisotropic data,, Comm. Partial Differential Equations, 33 (2008), 1622.
doi: 10.1080/03605300802108057. |
[9] |
T. Y. Hou and C. Li, Dynamic stability of the 3D axi-symmetric Navier-Stokes equations with swirl,, Comm. Pure Appl. Math., 61 (2008), 661.
doi: 10.1002/cpa.20212. |
[10] |
S. Leonardi, J. Málek, J. Nečas and M. Pokorný, On axially symmetric flows in $ R^3$,, Z. Anal. Anwendungen, 18 (1999), 639.
doi: 10.4171/ZAA/903. |
[11] |
O. A. Ladyzhenskaya, Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry,, Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7 (1968), 155.
|
[12] |
J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problems que pose I'hydrodynamique,, Journal Math. Pures et Appliquées, 12 (1933), 1. Google Scholar |
[13] |
J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1934), 193.
doi: 10.1007/BF02547354. |
[14] |
H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations,, Adv. Math., 157 (2001), 22.
doi: 10.1006/aima.2000.1937. |
[15] |
T. Kato, Strong $L^p$-solutions of the Navier-Stokes equations in $\mathbbR^m$ with applications to weak solutions,, Math. Z., 187 (1984), 471.
doi: 10.1007/BF01174182. |
[16] |
A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow,, Cambridge Texts in Applied Mathematics, (2002).
|
[17] |
M. R. Ukhovskii and V. I. Iudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space,, J. Appl. Math. Mech., 32 (1968), 52.
doi: 10.1016/0021-8928(68)90147-0. |
[18] |
F. B. Weissler, The Navier-Stokes initial value problem in $L^p$,, Arch. Ration. Mech. Anal., 74 (1980), 219.
doi: 10.1007/BF00280539. |
[1] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[2] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[3] |
Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018 |
[4] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[5] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[6] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[7] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[8] |
Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389 |
[9] |
A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121. |
[10] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[11] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[12] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[13] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[14] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[15] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[16] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[17] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[18] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[19] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[20] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]