July  2016, 36(7): 3845-3856. doi: 10.3934/dcds.2016.36.3845

Global well-posedness of axisymmetric Navier-Stokes equations with one slow variable

1. 

College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

2. 

Shanghai Key Laboratory for Contemporary Applied Mathematics, School of Mathematical Sciences, Fudan University, Shanghai 200433

Received  March 2015 Revised  November 2015 Published  March 2016

This paper deals with the global well-posedness of axisymmetric Navier-Stokes equations with swirl. We prove that there exists a global solution of Navier-Stokes equations under some weighted energy for a class of large anisotropic initial data slowly varying in the vertical variable.
Citation: Weimin Peng, Yi Zhou. Global well-posedness of axisymmetric Navier-Stokes equations with one slow variable. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3845-3856. doi: 10.3934/dcds.2016.36.3845
References:
[1]

M. Cannone, Chapter 3: Harmonic analysis tools for solving the incompressible navier-stokes equations, in Handbook of Mathmatical Fluid Dynamics, (Edited by S.J. Friedlander and D. Serre), Elsevier B. V., 3 (2004), 161-244.

[2]

M. Cannone, Y. Meyer and F. Planchon, Solutions auto-similaires des équations de Navier-Stokes, Sémin. Équations aux Dérivées Partielles de I'École polytechnique, Expose, 8 (1994), 12pp.

[3]

D. Chae and J. Lee, On the regularity of the axisymmetric solutions of the Navier-Stokes equations, Math. Z., 239 (2002), 645-671. doi: 10.1007/s002090100317.

[4]

C. C. Chen, R. M. Strain, T. P. Tsai and H. T. Yau, Lower bounds on the blow-up rate of the axisymmetric Navier-Stokes equations. II, Comm. Partial Differential Equations, 34 (2009), 203-232. doi: 10.1080/03605300902793956.

[5]

Clay Mathematics Institute, Available, from: , (). 

[6]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I, Arch. Rational Mech Anal., 16 (1964), 269-315. doi: 10.1007/BF00276188.

[7]

Y. Giga and T. Miyakama, Solutions in $L^r$ of the Navier-Stokes initial value problem, Arch. Ration. Mech. Anal., 89 (1985), 267-281. doi: 10.1007/BF00276875.

[8]

T. Y. Hou, Z. Lei and C. Li, Global regularity of the 3D axi-symmetric Navier-Stokes equations with anisotropic data, Comm. Partial Differential Equations, 33 (2008), 1622-1637. doi: 10.1080/03605300802108057.

[9]

T. Y. Hou and C. Li, Dynamic stability of the 3D axi-symmetric Navier-Stokes equations with swirl, Comm. Pure Appl. Math., 61 (2008), 661-697. doi: 10.1002/cpa.20212.

[10]

S. Leonardi, J. Málek, J. Nečas and M. Pokorný, On axially symmetric flows in $ R^3$, Z. Anal. Anwendungen, 18 (1999), 639-649. doi: 10.4171/ZAA/903.

[11]

O. A. Ladyzhenskaya, Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry, Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI),7 (1968), 155-177 (Russian).

[12]

J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problems que pose I'hydrodynamique, Journal Math. Pures et Appliquées, 12 (1933), 1-82.

[13]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248. doi: 10.1007/BF02547354.

[14]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35. doi: 10.1006/aima.2000.1937.

[15]

T. Kato, Strong $L^p$-solutions of the Navier-Stokes equations in $\mathbbR^m$ with applications to weak solutions, Math. Z., 187 (1984), 471-480. doi: 10.1007/BF01174182.

[16]

A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, 27. Cambridge University, Cambridge, Mass. 2002.

[17]

M. R. Ukhovskii and V. I. Iudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space, J. Appl. Math. Mech., 32 (1968), 52-61. doi: 10.1016/0021-8928(68)90147-0.

[18]

F. B. Weissler, The Navier-Stokes initial value problem in $L^p$, Arch. Ration. Mech. Anal., 74 (1980), 219-230. doi: 10.1007/BF00280539.

show all references

References:
[1]

M. Cannone, Chapter 3: Harmonic analysis tools for solving the incompressible navier-stokes equations, in Handbook of Mathmatical Fluid Dynamics, (Edited by S.J. Friedlander and D. Serre), Elsevier B. V., 3 (2004), 161-244.

[2]

M. Cannone, Y. Meyer and F. Planchon, Solutions auto-similaires des équations de Navier-Stokes, Sémin. Équations aux Dérivées Partielles de I'École polytechnique, Expose, 8 (1994), 12pp.

[3]

D. Chae and J. Lee, On the regularity of the axisymmetric solutions of the Navier-Stokes equations, Math. Z., 239 (2002), 645-671. doi: 10.1007/s002090100317.

[4]

C. C. Chen, R. M. Strain, T. P. Tsai and H. T. Yau, Lower bounds on the blow-up rate of the axisymmetric Navier-Stokes equations. II, Comm. Partial Differential Equations, 34 (2009), 203-232. doi: 10.1080/03605300902793956.

[5]

Clay Mathematics Institute, Available, from: , (). 

[6]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I, Arch. Rational Mech Anal., 16 (1964), 269-315. doi: 10.1007/BF00276188.

[7]

Y. Giga and T. Miyakama, Solutions in $L^r$ of the Navier-Stokes initial value problem, Arch. Ration. Mech. Anal., 89 (1985), 267-281. doi: 10.1007/BF00276875.

[8]

T. Y. Hou, Z. Lei and C. Li, Global regularity of the 3D axi-symmetric Navier-Stokes equations with anisotropic data, Comm. Partial Differential Equations, 33 (2008), 1622-1637. doi: 10.1080/03605300802108057.

[9]

T. Y. Hou and C. Li, Dynamic stability of the 3D axi-symmetric Navier-Stokes equations with swirl, Comm. Pure Appl. Math., 61 (2008), 661-697. doi: 10.1002/cpa.20212.

[10]

S. Leonardi, J. Málek, J. Nečas and M. Pokorný, On axially symmetric flows in $ R^3$, Z. Anal. Anwendungen, 18 (1999), 639-649. doi: 10.4171/ZAA/903.

[11]

O. A. Ladyzhenskaya, Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry, Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI),7 (1968), 155-177 (Russian).

[12]

J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problems que pose I'hydrodynamique, Journal Math. Pures et Appliquées, 12 (1933), 1-82.

[13]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248. doi: 10.1007/BF02547354.

[14]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35. doi: 10.1006/aima.2000.1937.

[15]

T. Kato, Strong $L^p$-solutions of the Navier-Stokes equations in $\mathbbR^m$ with applications to weak solutions, Math. Z., 187 (1984), 471-480. doi: 10.1007/BF01174182.

[16]

A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, 27. Cambridge University, Cambridge, Mass. 2002.

[17]

M. R. Ukhovskii and V. I. Iudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space, J. Appl. Math. Mech., 32 (1968), 52-61. doi: 10.1016/0021-8928(68)90147-0.

[18]

F. B. Weissler, The Navier-Stokes initial value problem in $L^p$, Arch. Ration. Mech. Anal., 74 (1980), 219-230. doi: 10.1007/BF00280539.

[1]

Quanrong Li, Shijin Ding. Global well-posedness of the Navier-Stokes equations with Navier-slip boundary conditions in a strip domain. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3561-3581. doi: 10.3934/cpaa.2021121

[2]

Keyan Wang, Yao Xiao. Local well-posedness for Navier-Stokes equations with a class of ill-prepared initial data. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2987-3011. doi: 10.3934/dcds.2020158

[3]

Bin Han, Changhua Wei. Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6921-6941. doi: 10.3934/dcds.2016101

[4]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure and Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[5]

Daoyuan Fang, Ruizhao Zi. On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3517-3541. doi: 10.3934/dcds.2013.33.3517

[6]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations and Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195

[7]

Matthias Hieber, Sylvie Monniaux. Well-posedness results for the Navier-Stokes equations in the rotational framework. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5143-5151. doi: 10.3934/dcds.2013.33.5143

[8]

Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148

[9]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[10]

Yoshihiro Shibata. Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 315-342. doi: 10.3934/dcdss.2016.9.315

[11]

Saoussen Sokrani. On the global well-posedness of 3-D Boussinesq system with partial viscosity and axisymmetric data. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1613-1650. doi: 10.3934/dcds.2019072

[12]

Joanna Rencławowicz, Wojciech M. Zajączkowski. Global regular solutions to the Navier-Stokes equations with large flux. Conference Publications, 2011, 2011 (Special) : 1234-1243. doi: 10.3934/proc.2011.2011.1234

[13]

Xin Zhong. Global well-posedness to the cauchy problem of two-dimensional density-dependent boussinesq equations with large initial data and vacuum. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6713-6745. doi: 10.3934/dcds.2019292

[14]

Jingjing Zhang, Ting Zhang. Local well-posedness of perturbed Navier-Stokes system around Landau solutions. Electronic Research Archive, 2021, 29 (4) : 2719-2739. doi: 10.3934/era.2021010

[15]

Hui Chen, Daoyuan Fang, Ting Zhang. Regularity of 3D axisymmetric Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1923-1939. doi: 10.3934/dcds.2017081

[16]

Zaihong Jiang, Li Li, Wenbo Lu. Existence of axisymmetric and homogeneous solutions of Navier-Stokes equations in cone regions. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4231-4258. doi: 10.3934/dcdss.2021126

[17]

Chao Deng, Xiaohua Yao. Well-posedness and ill-posedness for the 3D generalized Navier-Stokes equations in $\dot{F}^{-\alpha,r}_{\frac{3}{\alpha-1}}$. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 437-459. doi: 10.3934/dcds.2014.34.437

[18]

Gaocheng Yue, Chengkui Zhong. On the global well-posedness to the 3-D Navier-Stokes-Maxwell system. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5817-5835. doi: 10.3934/dcds.2016056

[19]

Gaocheng Yue, Chengkui Zhong. On the global well-posedness to the 3-D incompressible anisotropic magnetohydrodynamics equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5801-5815. doi: 10.3934/dcds.2016055

[20]

Lihuai Du, Ting Zhang. Local and global strong solution to the stochastic 3-D incompressible anisotropic Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4745-4765. doi: 10.3934/dcds.2018209

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]