-
Previous Article
Stability of stationary wave maps from a curved background to a sphere
- DCDS Home
- This Issue
-
Next Article
The Gardner equation and the stability of multi-kink solutions of the mKdV equation
Global well-posedness of axisymmetric Navier-Stokes equations with one slow variable
1. | College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China |
2. | Shanghai Key Laboratory for Contemporary Applied Mathematics, School of Mathematical Sciences, Fudan University, Shanghai 200433 |
References:
[1] |
M. Cannone, Chapter 3: Harmonic analysis tools for solving the incompressible navier-stokes equations, in Handbook of Mathmatical Fluid Dynamics, (Edited by S.J. Friedlander and D. Serre), Elsevier B. V., 3 (2004), 161-244. |
[2] |
M. Cannone, Y. Meyer and F. Planchon, Solutions auto-similaires des équations de Navier-Stokes, Sémin. Équations aux Dérivées Partielles de I'École polytechnique, Expose, 8 (1994), 12pp. |
[3] |
D. Chae and J. Lee, On the regularity of the axisymmetric solutions of the Navier-Stokes equations, Math. Z., 239 (2002), 645-671.
doi: 10.1007/s002090100317. |
[4] |
C. C. Chen, R. M. Strain, T. P. Tsai and H. T. Yau, Lower bounds on the blow-up rate of the axisymmetric Navier-Stokes equations. II, Comm. Partial Differential Equations, 34 (2009), 203-232.
doi: 10.1080/03605300902793956. |
[5] |
Clay Mathematics Institute, Available, from: , ().
|
[6] |
H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I, Arch. Rational Mech Anal., 16 (1964), 269-315.
doi: 10.1007/BF00276188. |
[7] |
Y. Giga and T. Miyakama, Solutions in $L^r$ of the Navier-Stokes initial value problem, Arch. Ration. Mech. Anal., 89 (1985), 267-281.
doi: 10.1007/BF00276875. |
[8] |
T. Y. Hou, Z. Lei and C. Li, Global regularity of the 3D axi-symmetric Navier-Stokes equations with anisotropic data, Comm. Partial Differential Equations, 33 (2008), 1622-1637.
doi: 10.1080/03605300802108057. |
[9] |
T. Y. Hou and C. Li, Dynamic stability of the 3D axi-symmetric Navier-Stokes equations with swirl, Comm. Pure Appl. Math., 61 (2008), 661-697.
doi: 10.1002/cpa.20212. |
[10] |
S. Leonardi, J. Málek, J. Nečas and M. Pokorný, On axially symmetric flows in $ R^3$, Z. Anal. Anwendungen, 18 (1999), 639-649.
doi: 10.4171/ZAA/903. |
[11] |
O. A. Ladyzhenskaya, Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry, Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI),7 (1968), 155-177 (Russian). |
[12] |
J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problems que pose I'hydrodynamique, Journal Math. Pures et Appliquées, 12 (1933), 1-82. |
[13] |
J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.
doi: 10.1007/BF02547354. |
[14] |
H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.
doi: 10.1006/aima.2000.1937. |
[15] |
T. Kato, Strong $L^p$-solutions of the Navier-Stokes equations in $\mathbbR^m$ with applications to weak solutions, Math. Z., 187 (1984), 471-480.
doi: 10.1007/BF01174182. |
[16] |
A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, 27. Cambridge University, Cambridge, Mass. 2002. |
[17] |
M. R. Ukhovskii and V. I. Iudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space, J. Appl. Math. Mech., 32 (1968), 52-61.
doi: 10.1016/0021-8928(68)90147-0. |
[18] |
F. B. Weissler, The Navier-Stokes initial value problem in $L^p$, Arch. Ration. Mech. Anal., 74 (1980), 219-230.
doi: 10.1007/BF00280539. |
show all references
References:
[1] |
M. Cannone, Chapter 3: Harmonic analysis tools for solving the incompressible navier-stokes equations, in Handbook of Mathmatical Fluid Dynamics, (Edited by S.J. Friedlander and D. Serre), Elsevier B. V., 3 (2004), 161-244. |
[2] |
M. Cannone, Y. Meyer and F. Planchon, Solutions auto-similaires des équations de Navier-Stokes, Sémin. Équations aux Dérivées Partielles de I'École polytechnique, Expose, 8 (1994), 12pp. |
[3] |
D. Chae and J. Lee, On the regularity of the axisymmetric solutions of the Navier-Stokes equations, Math. Z., 239 (2002), 645-671.
doi: 10.1007/s002090100317. |
[4] |
C. C. Chen, R. M. Strain, T. P. Tsai and H. T. Yau, Lower bounds on the blow-up rate of the axisymmetric Navier-Stokes equations. II, Comm. Partial Differential Equations, 34 (2009), 203-232.
doi: 10.1080/03605300902793956. |
[5] |
Clay Mathematics Institute, Available, from: , ().
|
[6] |
H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I, Arch. Rational Mech Anal., 16 (1964), 269-315.
doi: 10.1007/BF00276188. |
[7] |
Y. Giga and T. Miyakama, Solutions in $L^r$ of the Navier-Stokes initial value problem, Arch. Ration. Mech. Anal., 89 (1985), 267-281.
doi: 10.1007/BF00276875. |
[8] |
T. Y. Hou, Z. Lei and C. Li, Global regularity of the 3D axi-symmetric Navier-Stokes equations with anisotropic data, Comm. Partial Differential Equations, 33 (2008), 1622-1637.
doi: 10.1080/03605300802108057. |
[9] |
T. Y. Hou and C. Li, Dynamic stability of the 3D axi-symmetric Navier-Stokes equations with swirl, Comm. Pure Appl. Math., 61 (2008), 661-697.
doi: 10.1002/cpa.20212. |
[10] |
S. Leonardi, J. Málek, J. Nečas and M. Pokorný, On axially symmetric flows in $ R^3$, Z. Anal. Anwendungen, 18 (1999), 639-649.
doi: 10.4171/ZAA/903. |
[11] |
O. A. Ladyzhenskaya, Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry, Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI),7 (1968), 155-177 (Russian). |
[12] |
J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problems que pose I'hydrodynamique, Journal Math. Pures et Appliquées, 12 (1933), 1-82. |
[13] |
J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.
doi: 10.1007/BF02547354. |
[14] |
H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.
doi: 10.1006/aima.2000.1937. |
[15] |
T. Kato, Strong $L^p$-solutions of the Navier-Stokes equations in $\mathbbR^m$ with applications to weak solutions, Math. Z., 187 (1984), 471-480.
doi: 10.1007/BF01174182. |
[16] |
A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, 27. Cambridge University, Cambridge, Mass. 2002. |
[17] |
M. R. Ukhovskii and V. I. Iudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space, J. Appl. Math. Mech., 32 (1968), 52-61.
doi: 10.1016/0021-8928(68)90147-0. |
[18] |
F. B. Weissler, The Navier-Stokes initial value problem in $L^p$, Arch. Ration. Mech. Anal., 74 (1980), 219-230.
doi: 10.1007/BF00280539. |
[1] |
Quanrong Li, Shijin Ding. Global well-posedness of the Navier-Stokes equations with Navier-slip boundary conditions in a strip domain. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3561-3581. doi: 10.3934/cpaa.2021121 |
[2] |
Keyan Wang, Yao Xiao. Local well-posedness for Navier-Stokes equations with a class of ill-prepared initial data. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2987-3011. doi: 10.3934/dcds.2020158 |
[3] |
Bin Han, Changhua Wei. Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6921-6941. doi: 10.3934/dcds.2016101 |
[4] |
Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure and Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35 |
[5] |
Daoyuan Fang, Ruizhao Zi. On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3517-3541. doi: 10.3934/dcds.2013.33.3517 |
[6] |
Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations and Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195 |
[7] |
Matthias Hieber, Sylvie Monniaux. Well-posedness results for the Navier-Stokes equations in the rotational framework. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5143-5151. doi: 10.3934/dcds.2013.33.5143 |
[8] |
Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148 |
[9] |
Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142 |
[10] |
Yoshihiro Shibata. Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 315-342. doi: 10.3934/dcdss.2016.9.315 |
[11] |
Saoussen Sokrani. On the global well-posedness of 3-D Boussinesq system with partial viscosity and axisymmetric data. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1613-1650. doi: 10.3934/dcds.2019072 |
[12] |
Joanna Rencławowicz, Wojciech M. Zajączkowski. Global regular solutions to the Navier-Stokes equations with large flux. Conference Publications, 2011, 2011 (Special) : 1234-1243. doi: 10.3934/proc.2011.2011.1234 |
[13] |
Xin Zhong. Global well-posedness to the cauchy problem of two-dimensional density-dependent boussinesq equations with large initial data and vacuum. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6713-6745. doi: 10.3934/dcds.2019292 |
[14] |
Jingjing Zhang, Ting Zhang. Local well-posedness of perturbed Navier-Stokes system around Landau solutions. Electronic Research Archive, 2021, 29 (4) : 2719-2739. doi: 10.3934/era.2021010 |
[15] |
Hui Chen, Daoyuan Fang, Ting Zhang. Regularity of 3D axisymmetric Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1923-1939. doi: 10.3934/dcds.2017081 |
[16] |
Zaihong Jiang, Li Li, Wenbo Lu. Existence of axisymmetric and homogeneous solutions of Navier-Stokes equations in cone regions. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4231-4258. doi: 10.3934/dcdss.2021126 |
[17] |
Chao Deng, Xiaohua Yao. Well-posedness and ill-posedness for the 3D generalized Navier-Stokes equations in $\dot{F}^{-\alpha,r}_{\frac{3}{\alpha-1}}$. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 437-459. doi: 10.3934/dcds.2014.34.437 |
[18] |
Gaocheng Yue, Chengkui Zhong. On the global well-posedness to the 3-D Navier-Stokes-Maxwell system. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5817-5835. doi: 10.3934/dcds.2016056 |
[19] |
Gaocheng Yue, Chengkui Zhong. On the global well-posedness to the 3-D incompressible anisotropic magnetohydrodynamics equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5801-5815. doi: 10.3934/dcds.2016055 |
[20] |
Lihuai Du, Ting Zhang. Local and global strong solution to the stochastic 3-D incompressible anisotropic Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4745-4765. doi: 10.3934/dcds.2018209 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]