July  2016, 36(7): 3911-3925. doi: 10.3934/dcds.2016.36.3911

Hyperbolic periodic points for chain hyperbolic homoclinic classes

1. 

LMAM, School of Mathematical Sciences, Peking University, Beijing 100871

2. 

School of Mathematical Sciences, Peking University, Beijing, 100871

Received  May 2015 Revised  January 2016 Published  March 2016

In this paper we establish a closing property and a hyperbolic closing property for thin trapped chain hyperbolic homoclinic classes with one dimensional center in partial hyperbolicity setting. Taking advantage of theses properties, we prove that the growth rate of the number of hyperbolic periodic points is equal to the topological entropy. We also obtain that the hyperbolic periodic measures are dense in the space of invariant measures.
Citation: Wenxiang Sun, Yun Yang. Hyperbolic periodic points for chain hyperbolic homoclinic classes. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3911-3925. doi: 10.3934/dcds.2016.36.3911
References:
[1]

R. Bowen, Periodic points and measures for Axiom a diffeomorphisms,, Trans. Amer. Math. Soci., 154 (1971), 377.   Google Scholar

[2]

Y. M. Chung and M. Hirayama, Topological entropy and periodic orbits of saddle type for surface diffeomorphisms,, Hiroshima Math. J., 33 (2003), 189.   Google Scholar

[3]

S. Crovisier, Partially hyperbolicity far from homoclinic bifurcations,, Advances in Math., 226 (2011), 673.  doi: 10.1016/j.aim.2010.07.013.  Google Scholar

[4]

S. Crovisier and E. Pujals, Essential hyperbolicity and homoclinic bifurcations: A dichotomy phenomenon/mechanism for diffeomorphisms,, Invent. Math., 201 (2015), 385.  doi: 10.1007/s00222-014-0553-9.  Google Scholar

[5]

M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds,, Lecture Notes in Mathematics, 583 (1977).   Google Scholar

[6]

H. Hu, Y. Zhou and Y. Zhu, Quasi-shadowing for partially hyperbolic diffeomorphisms,, Ergodic Theory Dynam. Systems, 35 (2015), 412.  doi: 10.1017/etds.2014.126.  Google Scholar

[7]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms,, Pub. Math. de l'Institut des Hautes Études Scientifiques, 51 (1980), 137.   Google Scholar

[8]

S. Kryzhevich and S. Tikhomirov, Partial hyperbolicity and central shadowing,, Discrete Contin. Dyn. Sys., 33 (2013), 2901.  doi: 10.3934/dcds.2013.33.2901.  Google Scholar

[9]

G. Liao, M. Viana and J. Yang, The Entropy Conjecture for Diffeomorphisms away from Tangencies,, J. Eur. Math. Soc., 15 (2013), 2043.  doi: 10.4171/JEMS/413.  Google Scholar

[10]

J. Palis, A global view of dynamics and a conjecture on the denseness of finitude of attractors,, Géométrie Complexe et Systèmes Dynamiques, 261 (2000), 335.   Google Scholar

[11]

J. Palis, A global perspective for non-conservative dynamics,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 485.  doi: 10.1016/j.anihpc.2005.01.001.  Google Scholar

[12]

V. Pliss, On a conjecture of Smale,, Diff. Uravnenija, 8 (1972), 268.   Google Scholar

[13]

K. Sigmund, Generic properties of invariant measures for Axiom A diffeomorphisms,, Invent. Math., 11 (1970), 99.  doi: 10.1007/BF01404606.  Google Scholar

show all references

References:
[1]

R. Bowen, Periodic points and measures for Axiom a diffeomorphisms,, Trans. Amer. Math. Soci., 154 (1971), 377.   Google Scholar

[2]

Y. M. Chung and M. Hirayama, Topological entropy and periodic orbits of saddle type for surface diffeomorphisms,, Hiroshima Math. J., 33 (2003), 189.   Google Scholar

[3]

S. Crovisier, Partially hyperbolicity far from homoclinic bifurcations,, Advances in Math., 226 (2011), 673.  doi: 10.1016/j.aim.2010.07.013.  Google Scholar

[4]

S. Crovisier and E. Pujals, Essential hyperbolicity and homoclinic bifurcations: A dichotomy phenomenon/mechanism for diffeomorphisms,, Invent. Math., 201 (2015), 385.  doi: 10.1007/s00222-014-0553-9.  Google Scholar

[5]

M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds,, Lecture Notes in Mathematics, 583 (1977).   Google Scholar

[6]

H. Hu, Y. Zhou and Y. Zhu, Quasi-shadowing for partially hyperbolic diffeomorphisms,, Ergodic Theory Dynam. Systems, 35 (2015), 412.  doi: 10.1017/etds.2014.126.  Google Scholar

[7]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms,, Pub. Math. de l'Institut des Hautes Études Scientifiques, 51 (1980), 137.   Google Scholar

[8]

S. Kryzhevich and S. Tikhomirov, Partial hyperbolicity and central shadowing,, Discrete Contin. Dyn. Sys., 33 (2013), 2901.  doi: 10.3934/dcds.2013.33.2901.  Google Scholar

[9]

G. Liao, M. Viana and J. Yang, The Entropy Conjecture for Diffeomorphisms away from Tangencies,, J. Eur. Math. Soc., 15 (2013), 2043.  doi: 10.4171/JEMS/413.  Google Scholar

[10]

J. Palis, A global view of dynamics and a conjecture on the denseness of finitude of attractors,, Géométrie Complexe et Systèmes Dynamiques, 261 (2000), 335.   Google Scholar

[11]

J. Palis, A global perspective for non-conservative dynamics,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 485.  doi: 10.1016/j.anihpc.2005.01.001.  Google Scholar

[12]

V. Pliss, On a conjecture of Smale,, Diff. Uravnenija, 8 (1972), 268.   Google Scholar

[13]

K. Sigmund, Generic properties of invariant measures for Axiom A diffeomorphisms,, Invent. Math., 11 (1970), 99.  doi: 10.1007/BF01404606.  Google Scholar

[1]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[2]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[3]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[4]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[5]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021  doi: 10.3934/fods.2021005

[6]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[7]

Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391

[8]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[9]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[10]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[11]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[12]

Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020134

[13]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effects of disruption risk on a supply chain with a risk-averse retailer. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021024

[14]

Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021

[15]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[16]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[17]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[18]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[19]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[20]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (74)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]