-
Previous Article
Solitary gravity-capillary water waves with point vortices
- DCDS Home
- This Issue
-
Next Article
Stability of stationary wave maps from a curved background to a sphere
Hyperbolic periodic points for chain hyperbolic homoclinic classes
1. | LMAM, School of Mathematical Sciences, Peking University, Beijing 100871 |
2. | School of Mathematical Sciences, Peking University, Beijing, 100871 |
References:
[1] |
R. Bowen, Periodic points and measures for Axiom a diffeomorphisms,, Trans. Amer. Math. Soci., 154 (1971), 377.
|
[2] |
Y. M. Chung and M. Hirayama, Topological entropy and periodic orbits of saddle type for surface diffeomorphisms,, Hiroshima Math. J., 33 (2003), 189.
|
[3] |
S. Crovisier, Partially hyperbolicity far from homoclinic bifurcations,, Advances in Math., 226 (2011), 673.
doi: 10.1016/j.aim.2010.07.013. |
[4] |
S. Crovisier and E. Pujals, Essential hyperbolicity and homoclinic bifurcations: A dichotomy phenomenon/mechanism for diffeomorphisms,, Invent. Math., 201 (2015), 385.
doi: 10.1007/s00222-014-0553-9. |
[5] |
M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds,, Lecture Notes in Mathematics, 583 (1977).
|
[6] |
H. Hu, Y. Zhou and Y. Zhu, Quasi-shadowing for partially hyperbolic diffeomorphisms,, Ergodic Theory Dynam. Systems, 35 (2015), 412.
doi: 10.1017/etds.2014.126. |
[7] |
A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms,, Pub. Math. de l'Institut des Hautes Études Scientifiques, 51 (1980), 137.
|
[8] |
S. Kryzhevich and S. Tikhomirov, Partial hyperbolicity and central shadowing,, Discrete Contin. Dyn. Sys., 33 (2013), 2901.
doi: 10.3934/dcds.2013.33.2901. |
[9] |
G. Liao, M. Viana and J. Yang, The Entropy Conjecture for Diffeomorphisms away from Tangencies,, J. Eur. Math. Soc., 15 (2013), 2043.
doi: 10.4171/JEMS/413. |
[10] |
J. Palis, A global view of dynamics and a conjecture on the denseness of finitude of attractors,, Géométrie Complexe et Systèmes Dynamiques, 261 (2000), 335.
|
[11] |
J. Palis, A global perspective for non-conservative dynamics,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 485.
doi: 10.1016/j.anihpc.2005.01.001. |
[12] |
V. Pliss, On a conjecture of Smale,, Diff. Uravnenija, 8 (1972), 268.
|
[13] |
K. Sigmund, Generic properties of invariant measures for Axiom A diffeomorphisms,, Invent. Math., 11 (1970), 99.
doi: 10.1007/BF01404606. |
show all references
References:
[1] |
R. Bowen, Periodic points and measures for Axiom a diffeomorphisms,, Trans. Amer. Math. Soci., 154 (1971), 377.
|
[2] |
Y. M. Chung and M. Hirayama, Topological entropy and periodic orbits of saddle type for surface diffeomorphisms,, Hiroshima Math. J., 33 (2003), 189.
|
[3] |
S. Crovisier, Partially hyperbolicity far from homoclinic bifurcations,, Advances in Math., 226 (2011), 673.
doi: 10.1016/j.aim.2010.07.013. |
[4] |
S. Crovisier and E. Pujals, Essential hyperbolicity and homoclinic bifurcations: A dichotomy phenomenon/mechanism for diffeomorphisms,, Invent. Math., 201 (2015), 385.
doi: 10.1007/s00222-014-0553-9. |
[5] |
M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds,, Lecture Notes in Mathematics, 583 (1977).
|
[6] |
H. Hu, Y. Zhou and Y. Zhu, Quasi-shadowing for partially hyperbolic diffeomorphisms,, Ergodic Theory Dynam. Systems, 35 (2015), 412.
doi: 10.1017/etds.2014.126. |
[7] |
A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms,, Pub. Math. de l'Institut des Hautes Études Scientifiques, 51 (1980), 137.
|
[8] |
S. Kryzhevich and S. Tikhomirov, Partial hyperbolicity and central shadowing,, Discrete Contin. Dyn. Sys., 33 (2013), 2901.
doi: 10.3934/dcds.2013.33.2901. |
[9] |
G. Liao, M. Viana and J. Yang, The Entropy Conjecture for Diffeomorphisms away from Tangencies,, J. Eur. Math. Soc., 15 (2013), 2043.
doi: 10.4171/JEMS/413. |
[10] |
J. Palis, A global view of dynamics and a conjecture on the denseness of finitude of attractors,, Géométrie Complexe et Systèmes Dynamiques, 261 (2000), 335.
|
[11] |
J. Palis, A global perspective for non-conservative dynamics,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 485.
doi: 10.1016/j.anihpc.2005.01.001. |
[12] |
V. Pliss, On a conjecture of Smale,, Diff. Uravnenija, 8 (1972), 268.
|
[13] |
K. Sigmund, Generic properties of invariant measures for Axiom A diffeomorphisms,, Invent. Math., 11 (1970), 99.
doi: 10.1007/BF01404606. |
[1] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[2] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[3] |
Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427 |
[4] |
Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68. |
[5] |
Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021 doi: 10.3934/fods.2021005 |
[6] |
Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101 |
[7] |
Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391 |
[8] |
Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597 |
[9] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[10] |
Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169 |
[11] |
A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121. |
[12] |
Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020134 |
[13] |
Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effects of disruption risk on a supply chain with a risk-averse retailer. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021024 |
[14] |
Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021 |
[15] |
V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153 |
[16] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[17] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[18] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[19] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[20] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]