Citation: |
[1] |
R. Abraham and J. E. Marsden, Foundations of Mechanics, Benjamin Cummings, Reading, MA, 1978. |
[2] |
L. F. A. Arbogast, Du Calcul Des Dérivations, LeVrault Frères, Strasbourg, 1800. |
[3] |
C. Arzelà, Sulle funzioni di linee, Mem. Accad. Sci. Bologna, 5 (1895), 55-74. |
[4] |
L. Barreira and K. Gelfert, Dimension estimates in smooth dynamics: A survey of recent results, Ergod. Theory and Dyn. Syst., 31 (2011), 641-671.doi: 10.1017/S014338571000012X. |
[5] |
L. Barreira, A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems, Ergod. Theory and Dyn. Syst., 16 (1996), 871-927.doi: 10.1017/S0143385700010117. |
[6] |
R. Bowen, Periodic orbits for hyperbolic flows, Amer. J. Math., 94 (1972), 1-30.doi: 10.2307/2373590. |
[7] |
R. Bowen, Hausdorff dimension of quasi-circles, Pub. Math. de l'IHÉS, 50 (1979), 11-25. |
[8] |
N. Chernov and R. Markarian, Chaotic Billiards, Mathematical Surveys and Monographs, vol. 127. Amer. Math. Soc., Providence, RI, 2006.doi: 10.1090/surv/127. |
[9] |
M. Ikawa, Decay of solutions of the wave equation in the exterior of several convex bodies, Ann. Inst. Fourier, 38 (1988), 113-146.doi: 10.5802/aif.1137. |
[10] |
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, vol. 54. Cambridge Univ. Press, 1995.doi: 10.1017/CBO9780511809187. |
[11] |
A. Katok, G. Knieper, M. Pollicott and H. Weiss, Differentiability and analyticity of topological entropy for Anosov and geodesic flows, Inventiones Math., 98 (1989), 581-597.doi: 10.1007/BF01393838. |
[12] |
L. Kaup and B. Kaup, Holomorphic Functions of Several Variables: An Introduction to the Fundamental Theory, vol. 3. Walter de Gruyter, 1983.doi: 10.1515/9783110838350. |
[13] |
R. Kenny, Estimates of Hausdorff dimension for the non-wandering set of an open planar billiard, Can. J. Math., 56 (2004), 115-133.doi: 10.4153/CJM-2004-006-8. |
[14] |
A. Lopes and R. Markarian, Open billiards: Invariant and conditionally invariant probabilities on cantor sets, SIAM J. on App. Math., 56 (1996), 651-680.doi: 10.1137/S0036139995279433. |
[15] |
R. Mañé, The Hausdorff dimension of horseshoes of diffeomorphisms of surfaces, Bol. Soc. Bras. Mat., 20 (1990), 1-24.doi: 10.1007/BF02585431. |
[16] |
H. McCluskey and A. Manning, Hausdorff dimension for horseshoes, Ergod. Theory and Dyn. Syst., 3 (1983), 251-260.doi: 10.1017/S0143385700001966. |
[17] |
R. L. Mishkov, Generalization of the formula of Faá di Bruno for a composite function with a vector argument, Int. J. Math. and Math. Sci., 24 (2000), 481-491.doi: 10.1155/S0161171200002970. |
[18] |
T. Morita, The symbolic representation of billiards without boundary condition, Tran. Amer. Math. Soc., 325 (1991), 819-828.doi: 10.1090/S0002-9947-1991-1013334-6. |
[19] |
W. Parry and M. Pollicott, Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics, Astérisque, vol. 187-188. Soc. Math. France, Montrouge, 1990. |
[20] |
Ya. B. Pesin, Dimension Theory in Dynamical Systems: Contemporary Views and Applications, Chicago Lect. Math. Uni. of Chicago Press, 1997.doi: 10.7208/chicago/9780226662237.001.0001. |
[21] |
P. Richardson, Natural Smooth Measures on the Leaves of the Unstable Manifold of Open Billiard Dynamical Systems, Diss. Univ. of North Texas, 1998. |
[22] |
V. Petkov and L. Stoyanov, Geometry of Reflecting Rays and Inverse Spectral Problems, Wiley, Chichester, 1992. |
[23] |
W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, New York, 3rd ed., 1964. |
[24] |
D. Ruelle, Differentiation of SRB states, Comm. Math. Phys., 187 (1997), 227-241.doi: 10.1007/s002200050134. |
[25] |
Ya. G. Sinai, Dynamical systems with elastic reflections, Russian Math. Surv., 25 (1970), 137-191. |
[26] |
J. Sjöstrand, Geometric bounds on the density of resonances for semiclassical problems, Duke Math. J., 60 (1990), 1-57.doi: 10.1215/S0012-7094-90-06001-6. |
[27] |
L. Stoyanov, An estimate from above of the number of periodic orbits for semi-dispersed billiards, Comm. Math. Phys., 124 (1989), 217-227.doi: 10.1007/BF01219195. |
[28] |
L. Stoyanov, Exponential instability for a class of dispersing billiards, Ergod. Theory and Dyn. Syst., 19 (1999), 201-226.doi: 10.1017/S0143385799126543. |
[29] |
J. M. Varah, A lower bound for the smallest singular value of a matrix, Linear Alg. and Its Appl., 11 (1975), 3-5.doi: 10.1016/0024-3795(75)90112-3. |
[30] |
P. Walters, An Introduction to Ergodic Theory, vol. 79. Springer, New York, 1982. |
[31] |
P. Wright, Estimates of Hausdorff dimension for non-wandering sets of higher dimensional open billiards, Can. J. Math., 65 (2013), 1384-1400.doi: 10.4153/CJM-2013-030-0. |