- Previous Article
- DCDS Home
- This Issue
-
Next Article
Remarks on nonlinear elastic waves in the radial symmetry in 2-D
A formula of conditional entropy and some applications
1. | Wu Wen-Tsun Key Laboratory of Mathematics, USTC, Chinese Academy of Sciences, School of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China |
References:
[1] |
R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319.
doi: 10.1090/S0002-9947-1965-0175106-9. |
[2] |
T. Bogenschütz, Entropy, pressure, and a variational principle for random dynamical systems, Random Comput. Dynam., 1 (1992/93), 99-116. |
[3] |
R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136.
doi: 10.1090/S0002-9947-1973-0338317-X. |
[4] |
M. Brin and A. Katok, On local entropy, in Geometric Dynamics, Rio de Janeiro,,(1981),in Lecture Notes in Math., Springer, Berlin, 1007 (1983), 30-38.
doi: 10.1007/BFb0061408. |
[5] |
E. I. Dinaburg, A correlation between topological entropy and metric entropy, (Russian) Dokl. Akad. Nauk SSSR, 190 (1970), 19-22. |
[6] |
T. Downarowicz and J. Serafin, Fiber entropy and conditional variational principles in compact non-metrizable spaces, Fund. Math., 172 (2002), 217-247.
doi: 10.4064/fm172-3-2. |
[7] |
M. Einsiedler and T. Ward, Ergodic Theory with a View Towards Number Theory, Graduate Texts in Mathematics, 259, Springer-Verlag London, 2011.
doi: 10.1007/978-0-85729-021-2. |
[8] |
C. Fang, W. Huang, Y. Yi and P. Zhang, Dimensions of stable sets and scrambled sets in positive finite entropy systems, Ergodic Theory Dynam. Systems, 32 (2012), 599-628.
doi: 10.1017/S0143385710000982. |
[9] |
D. Feng and W. Huang, Variational principles for topological entropies of subsets, J. Funct. Anal., 263 (2012), 2228-2254.
doi: 10.1016/j.jfa.2012.07.010. |
[10] |
E. Glasner, Ergodic Theory Via Joinings, Mathematical Surveys and Monographs, 101, American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/surv/101. |
[11] |
T. N. T. Goodman, Relating topological entropy and measure entropy, Bull. London Math. Soc., 3 (1971), 176-180.
doi: 10.1112/blms/3.2.176. |
[12] |
L. W. Goodwyn, Topological entropy bounds measure-theoretic entropy, Proc. Amer. Math. Soc., 23 (1969), 679-688.
doi: 10.1090/S0002-9939-1969-0247030-3. |
[13] |
W. Huang, Stable sets and $\epsilon$-stable sets in positive-entropy systems, Comm. Math. Phys., 279 (2008), 535-557.
doi: 10.1007/s00220-008-0430-8. |
[14] |
W. Huang, J. Li and X.D. Ye, Stable sets and mean Li-Yorke chaos in positive entropy systems, J. Funct. Anal., 266 (2014), 3377-3394.
doi: 10.1016/j.jfa.2014.01.005. |
[15] |
F. Ledrappier and P. Walters, A relativised variational principle for continuous transformations, J. London Math. Soc.(2), 16 (1977), 568-576. |
[16] |
P. D. Liu, A note on the entropy of factors of random dynamical systems, Ergodic Theory Dynam. Systems, 25 (2005), 593-603.
doi: 10.1017/S0143385704000586. |
[17] |
A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137-173. |
[18] |
Y. Kifer, Ergodic Theory of Random Transformations, Progress in Probability and Statistics, 10, Birkhäuser Boston, Inc., Boston, MA, 1986.
doi: 10.1007/978-1-4684-9175-3. |
[19] |
A. N. Kolmogorov, A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces, (Russian) Dokl. Akad. Nauk. SSSR (N.S.), 119 (1958), 861-864. |
show all references
References:
[1] |
R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319.
doi: 10.1090/S0002-9947-1965-0175106-9. |
[2] |
T. Bogenschütz, Entropy, pressure, and a variational principle for random dynamical systems, Random Comput. Dynam., 1 (1992/93), 99-116. |
[3] |
R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136.
doi: 10.1090/S0002-9947-1973-0338317-X. |
[4] |
M. Brin and A. Katok, On local entropy, in Geometric Dynamics, Rio de Janeiro,,(1981),in Lecture Notes in Math., Springer, Berlin, 1007 (1983), 30-38.
doi: 10.1007/BFb0061408. |
[5] |
E. I. Dinaburg, A correlation between topological entropy and metric entropy, (Russian) Dokl. Akad. Nauk SSSR, 190 (1970), 19-22. |
[6] |
T. Downarowicz and J. Serafin, Fiber entropy and conditional variational principles in compact non-metrizable spaces, Fund. Math., 172 (2002), 217-247.
doi: 10.4064/fm172-3-2. |
[7] |
M. Einsiedler and T. Ward, Ergodic Theory with a View Towards Number Theory, Graduate Texts in Mathematics, 259, Springer-Verlag London, 2011.
doi: 10.1007/978-0-85729-021-2. |
[8] |
C. Fang, W. Huang, Y. Yi and P. Zhang, Dimensions of stable sets and scrambled sets in positive finite entropy systems, Ergodic Theory Dynam. Systems, 32 (2012), 599-628.
doi: 10.1017/S0143385710000982. |
[9] |
D. Feng and W. Huang, Variational principles for topological entropies of subsets, J. Funct. Anal., 263 (2012), 2228-2254.
doi: 10.1016/j.jfa.2012.07.010. |
[10] |
E. Glasner, Ergodic Theory Via Joinings, Mathematical Surveys and Monographs, 101, American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/surv/101. |
[11] |
T. N. T. Goodman, Relating topological entropy and measure entropy, Bull. London Math. Soc., 3 (1971), 176-180.
doi: 10.1112/blms/3.2.176. |
[12] |
L. W. Goodwyn, Topological entropy bounds measure-theoretic entropy, Proc. Amer. Math. Soc., 23 (1969), 679-688.
doi: 10.1090/S0002-9939-1969-0247030-3. |
[13] |
W. Huang, Stable sets and $\epsilon$-stable sets in positive-entropy systems, Comm. Math. Phys., 279 (2008), 535-557.
doi: 10.1007/s00220-008-0430-8. |
[14] |
W. Huang, J. Li and X.D. Ye, Stable sets and mean Li-Yorke chaos in positive entropy systems, J. Funct. Anal., 266 (2014), 3377-3394.
doi: 10.1016/j.jfa.2014.01.005. |
[15] |
F. Ledrappier and P. Walters, A relativised variational principle for continuous transformations, J. London Math. Soc.(2), 16 (1977), 568-576. |
[16] |
P. D. Liu, A note on the entropy of factors of random dynamical systems, Ergodic Theory Dynam. Systems, 25 (2005), 593-603.
doi: 10.1017/S0143385704000586. |
[17] |
A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137-173. |
[18] |
Y. Kifer, Ergodic Theory of Random Transformations, Progress in Probability and Statistics, 10, Birkhäuser Boston, Inc., Boston, MA, 1986.
doi: 10.1007/978-1-4684-9175-3. |
[19] |
A. N. Kolmogorov, A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces, (Russian) Dokl. Akad. Nauk. SSSR (N.S.), 119 (1958), 861-864. |
[1] |
Yuntao Zang. An upper bound of the measure-theoretical entropy. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022052 |
[2] |
Ugur G. Abdulla. Wiener's criterion at $\infty$ for the heat equation and its measure-theoretical counterpart. Electronic Research Announcements, 2008, 15: 44-51. doi: 10.3934/era.2008.15.44 |
[3] |
Andrzej Biś. Entropies of a semigroup of maps. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 639-648. doi: 10.3934/dcds.2004.11.639 |
[4] |
Vincent Giovangigli, Lionel Matuszewski. Structure of entropies in dissipative multicomponent fluids. Kinetic and Related Models, 2013, 6 (2) : 373-406. doi: 10.3934/krm.2013.6.373 |
[5] |
Mickaël Crampon. Entropies of strictly convex projective manifolds. Journal of Modern Dynamics, 2009, 3 (4) : 511-547. doi: 10.3934/jmd.2009.3.511 |
[6] |
Zhiming Li, Yujun Zhu. Entropies of commuting transformations on Hilbert spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5795-5814. doi: 10.3934/dcds.2020246 |
[7] |
Peng Sun. Measures of intermediate entropies for skew product diffeomorphisms. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1219-1231. doi: 10.3934/dcds.2010.27.1219 |
[8] |
Eduard Feireisl. Relative entropies in thermodynamics of complete fluid systems. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3059-3080. doi: 10.3934/dcds.2012.32.3059 |
[9] |
Ansgar Jüngel, Ingrid Violet. First-order entropies for the Derrida-Lebowitz-Speer-Spohn equation. Discrete and Continuous Dynamical Systems - B, 2007, 8 (4) : 861-877. doi: 10.3934/dcdsb.2007.8.861 |
[10] |
Welington Cordeiro, Manfred Denker, Xuan Zhang. On specification and measure expansiveness. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1941-1957. doi: 10.3934/dcds.2017082 |
[11] |
Welington Cordeiro, Manfred Denker, Xuan Zhang. Corrigendum to: On specification and measure expansiveness. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3705-3706. doi: 10.3934/dcds.2018160 |
[12] |
Petr Kůrka. On the measure attractor of a cellular automaton. Conference Publications, 2005, 2005 (Special) : 524-535. doi: 10.3934/proc.2005.2005.524 |
[13] |
Tomasz Downarowicz, Yonatan Gutman, Dawid Huczek. Rank as a function of measure. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2741-2750. doi: 10.3934/dcds.2014.34.2741 |
[14] |
Zari Dzalilov, Iradj Ouveysi, Alexander Rubinov. An extended lifetime measure for telecommunication network. Journal of Industrial and Management Optimization, 2008, 4 (2) : 329-337. doi: 10.3934/jimo.2008.4.329 |
[15] |
M. Baake, P. Gohlke, M. Kesseböhmer, T. Schindler. Scaling properties of the Thue–Morse measure. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4157-4185. doi: 10.3934/dcds.2019168 |
[16] |
Barbara Brandolini, Francesco Chiacchio, Cristina Trombetti. Hardy type inequalities and Gaussian measure. Communications on Pure and Applied Analysis, 2007, 6 (2) : 411-428. doi: 10.3934/cpaa.2007.6.411 |
[17] |
Oliver Jenkinson. Every ergodic measure is uniquely maximizing. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 383-392. doi: 10.3934/dcds.2006.16.383 |
[18] |
Xiangfeng Yang. Stability in measure for uncertain heat equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6533-6540. doi: 10.3934/dcdsb.2019152 |
[19] |
Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477 |
[20] |
Hayden Schaeffer, John Garnett, Luminita A. Vese. A texture model based on a concentration of measure. Inverse Problems and Imaging, 2013, 7 (3) : 927-946. doi: 10.3934/ipi.2013.7.927 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]