August  2016, 36(8): 4367-4382. doi: 10.3934/dcds.2016.36.4367

On the stability of time-domain integral equations for acoustic wave propagation

1. 

209 S. 33rd Street, Department of Mathematics, Philadelphia, PA, 19104-6395, United States

2. 

251 Mercer St, Courant Institute, NYU, New York, NY, 10012, United States

3. 

Dept. of Mathematics, Southern Methodist University, PO Box 750156, Dallas, TX 75275-0156, United States

Received  April 2015 Revised  October 2015 Published  March 2016

We give a principled approach for the selection of a boundary integral, retarded potential representation for the solution of scattering problems for the wave equation in an exterior domain.
Citation: Charles L. Epstein, Leslie Greengard, Thomas Hagstrom. On the stability of time-domain integral equations for acoustic wave propagation. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4367-4382. doi: 10.3934/dcds.2016.36.4367
References:
[1]

D. Baskin, E. Spence and J. Wunsch, Sharp high-frequency estimates for the Helmholtz equation and applications to boundary integral equations, SIAM J. Math. Anal., 48 (2016), 229-267, arXiv:1504.01037v1. doi: 10.1137/15M102530X.

[2]

S. N. Chandler-Wilde and P. Monk, Wave-number-explicit bounds in time- harmonic scattering, SIAM Journal on Mathematical Analysis, 39 (2008), 1428-1455. doi: 10.1137/060662575.

[3]

M. Costabel, Time-dependent Problems with the Boundary Integral Equation Method, in Encyclopedia of Computational Mechanics (eds. E. Stein, R. Borst and T. Hughes), Wiley, New York, 2004. doi: 10.1002/0470091355.ecm022.

[4]

V. Dominguez and F. Sayas, Some properties of layer potentials and boundary integral operators for the wave equation, J. Int. Equations Appl., 25 (2013), 253-294. doi: 10.1216/JIE-2013-25-2-253.

[5]

T. Ha-Duong, B. Ludwig and I. Terrasse, A Galerkin BEM for transient acoustic scattering by an absorbing obstacle, Internat. J. Numer. Methods Engrg., 57 (2003), 1845-1882. doi: 10.1002/nme.745.

[6]

T. Ha-Duong, On retarded potential boundary integral equations and their discretisation, in Topics in computational wave propagation, vol. 31 of Lect. Notes Comput. Sci. Eng., Springer, Berlin, 2003, 301-336, URL http://dx.doi.org/10.1007/978-3-642-55483-4_8. doi: 10.1007/978-3-642-55483-4_8.

[7]

R. Kress, Minimizing the condition number of boundary integral-operators in acoustic and electromagnetic scattering, Q. J. Mech. Appl. Math., 38 (1985), 323-341. doi: 10.1093/qjmam/38.2.323.

[8]

P. D. Lax, C. S. Morawetz and R. S. Phillips, Exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle, Comm. Pure Appl. Math., 16 (1963), 477-486. doi: 10.1002/cpa.3160160407.

[9]

P. D. Lax and R. S. Phillips, Scattering Theory, vol. 26 of Pure and Applied Mathematics, 2nd edition, Academic Press, Inc., Boston, MA, 1989, With appendices by Cathleen S. Morawetz and Georg Schmidt.

[10]

A. Ludwig and Y. Leviatan, Towards a stable two-dimensional time-domain source-model solution by use of a combined source formulation, IEEE Trans. Antennas Propag., 54 (2006), 3010-3021. doi: 10.1109/TAP.2006.882169.

[11]

B. Shanker, A. A. Ergin, K. Aygün and E. Michielssen, Analysis of transient electromagnetic scattering from closed surfaces using a combined field integral equation, IEEE Trans. Antennas and Propagation, 48 (2000), 1064-1074. doi: 10.1109/8.876325.

[12]

B. R. Vainberg, Asymptotic Methods in Equations of Mathematical Physics, CRC Press, 1989.

show all references

References:
[1]

D. Baskin, E. Spence and J. Wunsch, Sharp high-frequency estimates for the Helmholtz equation and applications to boundary integral equations, SIAM J. Math. Anal., 48 (2016), 229-267, arXiv:1504.01037v1. doi: 10.1137/15M102530X.

[2]

S. N. Chandler-Wilde and P. Monk, Wave-number-explicit bounds in time- harmonic scattering, SIAM Journal on Mathematical Analysis, 39 (2008), 1428-1455. doi: 10.1137/060662575.

[3]

M. Costabel, Time-dependent Problems with the Boundary Integral Equation Method, in Encyclopedia of Computational Mechanics (eds. E. Stein, R. Borst and T. Hughes), Wiley, New York, 2004. doi: 10.1002/0470091355.ecm022.

[4]

V. Dominguez and F. Sayas, Some properties of layer potentials and boundary integral operators for the wave equation, J. Int. Equations Appl., 25 (2013), 253-294. doi: 10.1216/JIE-2013-25-2-253.

[5]

T. Ha-Duong, B. Ludwig and I. Terrasse, A Galerkin BEM for transient acoustic scattering by an absorbing obstacle, Internat. J. Numer. Methods Engrg., 57 (2003), 1845-1882. doi: 10.1002/nme.745.

[6]

T. Ha-Duong, On retarded potential boundary integral equations and their discretisation, in Topics in computational wave propagation, vol. 31 of Lect. Notes Comput. Sci. Eng., Springer, Berlin, 2003, 301-336, URL http://dx.doi.org/10.1007/978-3-642-55483-4_8. doi: 10.1007/978-3-642-55483-4_8.

[7]

R. Kress, Minimizing the condition number of boundary integral-operators in acoustic and electromagnetic scattering, Q. J. Mech. Appl. Math., 38 (1985), 323-341. doi: 10.1093/qjmam/38.2.323.

[8]

P. D. Lax, C. S. Morawetz and R. S. Phillips, Exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle, Comm. Pure Appl. Math., 16 (1963), 477-486. doi: 10.1002/cpa.3160160407.

[9]

P. D. Lax and R. S. Phillips, Scattering Theory, vol. 26 of Pure and Applied Mathematics, 2nd edition, Academic Press, Inc., Boston, MA, 1989, With appendices by Cathleen S. Morawetz and Georg Schmidt.

[10]

A. Ludwig and Y. Leviatan, Towards a stable two-dimensional time-domain source-model solution by use of a combined source formulation, IEEE Trans. Antennas Propag., 54 (2006), 3010-3021. doi: 10.1109/TAP.2006.882169.

[11]

B. Shanker, A. A. Ergin, K. Aygün and E. Michielssen, Analysis of transient electromagnetic scattering from closed surfaces using a combined field integral equation, IEEE Trans. Antennas and Propagation, 48 (2000), 1064-1074. doi: 10.1109/8.876325.

[12]

B. R. Vainberg, Asymptotic Methods in Equations of Mathematical Physics, CRC Press, 1989.

[1]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[2]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations and Control Theory, 2022, 11 (2) : 515-536. doi: 10.3934/eect.2021011

[3]

Yaru Xie, Genqi Xu. Exponential stability of 1-d wave equation with the boundary time delay based on the interior control. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 557-579. doi: 10.3934/dcdss.2017028

[4]

Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001

[5]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[6]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[7]

Feng Zhou, Chunyou Sun, Xin Li. Dynamics for the damped wave equations on time-dependent domains. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1645-1674. doi: 10.3934/dcdsb.2018068

[8]

Fengjuan Meng, Meihua Yang, Chengkui Zhong. Attractors for wave equations with nonlinear damping on time-dependent space. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 205-225. doi: 10.3934/dcdsb.2016.21.205

[9]

Montgomery Taylor. The diffusion phenomenon for damped wave equations with space-time dependent coefficients. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5921-5941. doi: 10.3934/dcds.2018257

[10]

Sergiu Aizicovici, Yimin Ding, N. S. Papageorgiou. Time dependent Volterra integral inclusions in Banach spaces. Discrete and Continuous Dynamical Systems, 1996, 2 (1) : 53-63. doi: 10.3934/dcds.1996.2.53

[11]

Takeshi Taniguchi. Exponential boundary stabilization for nonlinear wave equations with localized damping and nonlinear boundary condition. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1571-1585. doi: 10.3934/cpaa.2017075

[12]

Serge Nicaise, Julie Valein, Emilia Fridman. Stability of the heat and of the wave equations with boundary time-varying delays. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 559-581. doi: 10.3934/dcdss.2009.2.559

[13]

Beatrice Bugert, Gunther Schmidt. Analytical investigation of an integral equation method for electromagnetic scattering by biperiodic structures. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 435-473. doi: 10.3934/dcdss.2015.8.435

[14]

Yaru Xie, Genqi Xu. The exponential decay rate of generic tree of 1-d wave equations with boundary feedback controls. Networks and Heterogeneous Media, 2016, 11 (3) : 527-543. doi: 10.3934/nhm.2016008

[15]

Nguyen Thanh Long, Hoang Hai Ha, Le Thi Phuong Ngoc, Nguyen Anh Triet. Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (1) : 455-492. doi: 10.3934/cpaa.2020023

[16]

Qingquan Chang, Dandan Li, Chunyou Sun. Random attractors for stochastic time-dependent damped wave equation with critical exponents. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2793-2824. doi: 10.3934/dcdsb.2020033

[17]

Xudong Luo, Qiaozhen Ma. The existence of time-dependent attractor for wave equation with fractional damping and lower regular forcing term. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021253

[18]

Mohamed Jleli, Bessem Samet. Blow-up for semilinear wave equations with time-dependent damping in an exterior domain. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3885-3900. doi: 10.3934/cpaa.2020143

[19]

Guanghui Hu, Yavar Kian. Determination of singular time-dependent coefficients for wave equations from full and partial data. Inverse Problems and Imaging, 2018, 12 (3) : 745-772. doi: 10.3934/ipi.2018032

[20]

Ahmad Z. Fino, Mohamed Ali Hamza. Blow-up of solutions to semilinear wave equations with a time-dependent strong damping. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022006

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (145)
  • HTML views (0)
  • Cited by (12)

[Back to Top]