\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the stability of time-domain integral equations for acoustic wave propagation

Abstract Related Papers Cited by
  • We give a principled approach for the selection of a boundary integral, retarded potential representation for the solution of scattering problems for the wave equation in an exterior domain.
    Mathematics Subject Classification: Primary: 65M80, 31B10; Secondary: 35P25, 35L20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. Baskin, E. Spence and J. Wunsch, Sharp high-frequency estimates for the Helmholtz equation and applications to boundary integral equations, SIAM J. Math. Anal., 48 (2016), 229-267, arXiv:1504.01037v1.doi: 10.1137/15M102530X.

    [2]

    S. N. Chandler-Wilde and P. Monk, Wave-number-explicit bounds in time- harmonic scattering, SIAM Journal on Mathematical Analysis, 39 (2008), 1428-1455.doi: 10.1137/060662575.

    [3]

    M. Costabel, Time-dependent Problems with the Boundary Integral Equation Method, in Encyclopedia of Computational Mechanics (eds. E. Stein, R. Borst and T. Hughes), Wiley, New York, 2004.doi: 10.1002/0470091355.ecm022.

    [4]

    V. Dominguez and F. Sayas, Some properties of layer potentials and boundary integral operators for the wave equation, J. Int. Equations Appl., 25 (2013), 253-294.doi: 10.1216/JIE-2013-25-2-253.

    [5]

    T. Ha-Duong, B. Ludwig and I. Terrasse, A Galerkin BEM for transient acoustic scattering by an absorbing obstacle, Internat. J. Numer. Methods Engrg., 57 (2003), 1845-1882.doi: 10.1002/nme.745.

    [6]

    T. Ha-Duong, On retarded potential boundary integral equations and their discretisation, in Topics in computational wave propagation, vol. 31 of Lect. Notes Comput. Sci. Eng., Springer, Berlin, 2003, 301-336, URL http://dx.doi.org/10.1007/978-3-642-55483-4_8.doi: 10.1007/978-3-642-55483-4_8.

    [7]

    R. Kress, Minimizing the condition number of boundary integral-operators in acoustic and electromagnetic scattering, Q. J. Mech. Appl. Math., 38 (1985), 323-341.doi: 10.1093/qjmam/38.2.323.

    [8]

    P. D. Lax, C. S. Morawetz and R. S. Phillips, Exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle, Comm. Pure Appl. Math., 16 (1963), 477-486.doi: 10.1002/cpa.3160160407.

    [9]

    P. D. Lax and R. S. Phillips, Scattering Theory, vol. 26 of Pure and Applied Mathematics, 2nd edition, Academic Press, Inc., Boston, MA, 1989, With appendices by Cathleen S. Morawetz and Georg Schmidt.

    [10]

    A. Ludwig and Y. Leviatan, Towards a stable two-dimensional time-domain source-model solution by use of a combined source formulation, IEEE Trans. Antennas Propag., 54 (2006), 3010-3021.doi: 10.1109/TAP.2006.882169.

    [11]

    B. Shanker, A. A. Ergin, K. Aygün and E. Michielssen, Analysis of transient electromagnetic scattering from closed surfaces using a combined field integral equation, IEEE Trans. Antennas and Propagation, 48 (2000), 1064-1074.doi: 10.1109/8.876325.

    [12]

    B. R. Vainberg, Asymptotic Methods in Equations of Mathematical Physics, CRC Press, 1989.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(161) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return