-
Previous Article
Numerical algorithms for stationary statistical properties of dissipative dynamical systems
- DCDS Home
- This Issue
-
Next Article
The relative entropy method for the stability of intermediate shock waves; the rich case
Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws
1. | Department of Mathematics, Institute for Physical Science & Technology and Center of Scientific Computation and Mathematical Modeling (CSCAMM), University of Maryland, College Park, MD 20742 |
  We demonstrate this approach with a host of second-- and higher--order accurate schemes, ranging from scalar examples to the systems of shallow-water, Euler and Navier-Stokes equations. We present a family of energy conservative schemes for the shallow-water equations with a well-balanced description of their steady-states. Numerical experiments provide a remarkable evidence for the different roles of viscosity and heat conduction in forming sharp monotone profiles in Euler equations, and we conclude with the computation of entropic measure-valued solutions based on the class of so-called TeCNO schemes --- arbitrarily high-order accurate, non-oscillatory and entropy stable schemes for systems of conservation laws.
References:
[1] |
S. Bianchini and A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems, Annals of Mathematics, 161 (2005), 223-342.
doi: 10.4007/annals.2005.161.223. |
[2] |
G.-Q. Chen, Compactness methods and nonlinear hyperbolic conservation laws: Some current topics on nonlinear conservation laws, in AMS/IP Stud. Adv. Math., 15, Amer. Math. Soc., Providence, RI, (2000), 33-75. |
[3] |
C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer, Berlin, 325, 2000.
doi: 10.1007/978-3-642-04048-1. |
[4] |
P. Deift and K. T. R. McLaughlin, A continuum limit of the Toda lattice, Mem. Amer. Math. Soc., 131 (1998), x+216 pp.
doi: 10.1090/memo/0624. |
[5] |
R. J. DiPerna, Measure valued solutions to conservation laws, Arch. Rational Mech. Anal., 88 (1985), 223-270.
doi: 10.1007/BF00752112. |
[6] |
U. Fjordholm, S. Mishra and E. Tadmor, Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography, J. Computational Physics, 230 (2011), 5587-5609.
doi: 10.1016/j.jcp.2011.03.042. |
[7] |
U. Fjordholm, S. Mishra and E. Tadmor, Arbitrarily high order accurate entropy stable essentially non-oscillatory schemes for systems of conservation laws, SIAM J. on Numerical Analysis, 50 (2012), 544-573.
doi: 10.1137/110836961. |
[8] |
U. Fjordholm, R. Kappeli, S. Mishra and E. Tadmor, Construction of approximate entropy measure valued solutions for hyperbolic systems of conservation laws, Foundations Comp. Math., (2015), 1-65.
doi: 10.1007/s10208-015-9299-z. |
[9] |
K. O. Friedrichs and P. D. Lax, Systems of conservation laws with a convex extension, Proc. Nat. Acad. Sci. USA, 68 (1971), 1686-1688.
doi: 10.1073/pnas.68.8.1686. |
[10] |
S. K. Godunov, An interesting class of quasilinear systems, Dokl. Acad. Nauk. SSSR, 139 (1961), 521-523. |
[11] |
A. Harten, B. Engquist, S. Osher and S. R. Chakravarty, Uniformly high order accurate essentially non-oscillatory schemes, J. Comput. Phys., 71 (1987), 231-303.
doi: 10.1016/0021-9991(87)90031-3. |
[12] |
F. Ismail and P. L. Roe, Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks, Journal of Computational Physics, 228 (2009), 5410-5436.
doi: 10.1016/j.jcp.2009.04.021. |
[13] |
S. N. Kruzkhov, First order quasilinear equations in several independent variables, USSR Math. Sbornik, 10 (1970), 217-243. |
[14] |
P. D. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math., 10 (1957), 537-566.
doi: 10.1002/cpa.3160100406. |
[15] |
P. D. Lax, Shock waves and entropy, in Contributions to Nonlinear Functional Analysis, (E. A. Zarantonello, ed.), Academic Press, New York, (1971), 603-634. |
[16] |
P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, SIAM Regional Conference Lectures in Applied Mathematics, 11, 1973. |
[17] |
P. D. Lax, On dispersive difference schemes, Physica D, 18 (1986), 250-254.
doi: 10.1016/0167-2789(86)90185-5. |
[18] |
P. D. Lax, Mathematics and Physics, Bull. AMS, 45 (2008), 135-152.
doi: 10.1090/S0273-0979-07-01182-2. |
[19] |
P. D. Lax, John von Neumann: The Early Years, The Years at Los Alamos and the Road to Computing, in "Modern Perspectives in Applied Mathematics: Theory and Numerics of PDEs'', 2014. Available from: http://www.ki-net.umd.edu/tn60/2014_04_30_Lax_Banquet_talk.pdf. |
[20] |
P. D. Lax, D. Levermore and S. Venakidis, The generation and propagation of oscillations in dispersive IVPs and their limiting behavior, in Important Developments in Soliton Theory 1980-1990 (T. Fokas and V. E. Zakharov, eds), Springer, Berlin, 1993. |
[21] |
P. D. Lax and B. Wendroff, Systems of conservation laws, Comm. Pure Appl. Math., 13 (1960), 217-237.
doi: 10.1002/cpa.3160130205. |
[22] |
P. LeFloch and C. Rohde, High-order schemes, entropy inequalities and non-classical shocks, SIAM J. Numer. Analm., 37 (2000), 2023-2060.
doi: 10.1137/S0036142998345256. |
[23] |
M. S. Mock, Systems of conservation of mixed type, J. Diff. Eqns., 37 (1980), 70-88.
doi: 10.1016/0022-0396(80)90089-3. |
[24] |
J. von Neumann and R. D. Richtmyer, A method for the numerical calculation of hydrodynamic shocks, J. Appl. Phys., 21 (1950), 232-237.
doi: 10.1063/1.1699639. |
[25] |
P. L. Roe, Approximate Riemann solvers, parameter vectors and difference schemes, J. Comput. Phys., 43 (1981), 357-372.
doi: 10.1016/0021-9991(81)90128-5. |
[26] |
C. W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory schemes - II, J. Comput. Phys., 83 (1989), 32-78.
doi: 10.1016/0021-9991(89)90222-2. |
[27] |
E. Tadmor, Numerical viscosity and the entropy condition for conservative difference schemes, Math. Comp., 43 (1984), 369-381.
doi: 10.1090/S0025-5718-1984-0758189-X. |
[28] |
E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws, I, Math. Comp., 49 (1987), 91-103.
doi: 10.1090/S0025-5718-1987-0890255-3. |
[29] |
E. Tadmor, Entropy stability theory for difference approximations of nonlinear conservation laws and related time dependent problems, Acta Numerica, 42 (2003), 451-512.
doi: 10.1017/S0962492902000156. |
[30] |
E. Tadmor and W. Zhong, Entropy stable approximations of Navier-Stokes equations with no artificial numerical viscosity, J. Hyperbolic DEs, 3 (2006), 529-559.
doi: 10.1142/S0219891606000896. |
show all references
References:
[1] |
S. Bianchini and A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems, Annals of Mathematics, 161 (2005), 223-342.
doi: 10.4007/annals.2005.161.223. |
[2] |
G.-Q. Chen, Compactness methods and nonlinear hyperbolic conservation laws: Some current topics on nonlinear conservation laws, in AMS/IP Stud. Adv. Math., 15, Amer. Math. Soc., Providence, RI, (2000), 33-75. |
[3] |
C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer, Berlin, 325, 2000.
doi: 10.1007/978-3-642-04048-1. |
[4] |
P. Deift and K. T. R. McLaughlin, A continuum limit of the Toda lattice, Mem. Amer. Math. Soc., 131 (1998), x+216 pp.
doi: 10.1090/memo/0624. |
[5] |
R. J. DiPerna, Measure valued solutions to conservation laws, Arch. Rational Mech. Anal., 88 (1985), 223-270.
doi: 10.1007/BF00752112. |
[6] |
U. Fjordholm, S. Mishra and E. Tadmor, Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography, J. Computational Physics, 230 (2011), 5587-5609.
doi: 10.1016/j.jcp.2011.03.042. |
[7] |
U. Fjordholm, S. Mishra and E. Tadmor, Arbitrarily high order accurate entropy stable essentially non-oscillatory schemes for systems of conservation laws, SIAM J. on Numerical Analysis, 50 (2012), 544-573.
doi: 10.1137/110836961. |
[8] |
U. Fjordholm, R. Kappeli, S. Mishra and E. Tadmor, Construction of approximate entropy measure valued solutions for hyperbolic systems of conservation laws, Foundations Comp. Math., (2015), 1-65.
doi: 10.1007/s10208-015-9299-z. |
[9] |
K. O. Friedrichs and P. D. Lax, Systems of conservation laws with a convex extension, Proc. Nat. Acad. Sci. USA, 68 (1971), 1686-1688.
doi: 10.1073/pnas.68.8.1686. |
[10] |
S. K. Godunov, An interesting class of quasilinear systems, Dokl. Acad. Nauk. SSSR, 139 (1961), 521-523. |
[11] |
A. Harten, B. Engquist, S. Osher and S. R. Chakravarty, Uniformly high order accurate essentially non-oscillatory schemes, J. Comput. Phys., 71 (1987), 231-303.
doi: 10.1016/0021-9991(87)90031-3. |
[12] |
F. Ismail and P. L. Roe, Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks, Journal of Computational Physics, 228 (2009), 5410-5436.
doi: 10.1016/j.jcp.2009.04.021. |
[13] |
S. N. Kruzkhov, First order quasilinear equations in several independent variables, USSR Math. Sbornik, 10 (1970), 217-243. |
[14] |
P. D. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math., 10 (1957), 537-566.
doi: 10.1002/cpa.3160100406. |
[15] |
P. D. Lax, Shock waves and entropy, in Contributions to Nonlinear Functional Analysis, (E. A. Zarantonello, ed.), Academic Press, New York, (1971), 603-634. |
[16] |
P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, SIAM Regional Conference Lectures in Applied Mathematics, 11, 1973. |
[17] |
P. D. Lax, On dispersive difference schemes, Physica D, 18 (1986), 250-254.
doi: 10.1016/0167-2789(86)90185-5. |
[18] |
P. D. Lax, Mathematics and Physics, Bull. AMS, 45 (2008), 135-152.
doi: 10.1090/S0273-0979-07-01182-2. |
[19] |
P. D. Lax, John von Neumann: The Early Years, The Years at Los Alamos and the Road to Computing, in "Modern Perspectives in Applied Mathematics: Theory and Numerics of PDEs'', 2014. Available from: http://www.ki-net.umd.edu/tn60/2014_04_30_Lax_Banquet_talk.pdf. |
[20] |
P. D. Lax, D. Levermore and S. Venakidis, The generation and propagation of oscillations in dispersive IVPs and their limiting behavior, in Important Developments in Soliton Theory 1980-1990 (T. Fokas and V. E. Zakharov, eds), Springer, Berlin, 1993. |
[21] |
P. D. Lax and B. Wendroff, Systems of conservation laws, Comm. Pure Appl. Math., 13 (1960), 217-237.
doi: 10.1002/cpa.3160130205. |
[22] |
P. LeFloch and C. Rohde, High-order schemes, entropy inequalities and non-classical shocks, SIAM J. Numer. Analm., 37 (2000), 2023-2060.
doi: 10.1137/S0036142998345256. |
[23] |
M. S. Mock, Systems of conservation of mixed type, J. Diff. Eqns., 37 (1980), 70-88.
doi: 10.1016/0022-0396(80)90089-3. |
[24] |
J. von Neumann and R. D. Richtmyer, A method for the numerical calculation of hydrodynamic shocks, J. Appl. Phys., 21 (1950), 232-237.
doi: 10.1063/1.1699639. |
[25] |
P. L. Roe, Approximate Riemann solvers, parameter vectors and difference schemes, J. Comput. Phys., 43 (1981), 357-372.
doi: 10.1016/0021-9991(81)90128-5. |
[26] |
C. W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory schemes - II, J. Comput. Phys., 83 (1989), 32-78.
doi: 10.1016/0021-9991(89)90222-2. |
[27] |
E. Tadmor, Numerical viscosity and the entropy condition for conservative difference schemes, Math. Comp., 43 (1984), 369-381.
doi: 10.1090/S0025-5718-1984-0758189-X. |
[28] |
E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws, I, Math. Comp., 49 (1987), 91-103.
doi: 10.1090/S0025-5718-1987-0890255-3. |
[29] |
E. Tadmor, Entropy stability theory for difference approximations of nonlinear conservation laws and related time dependent problems, Acta Numerica, 42 (2003), 451-512.
doi: 10.1017/S0962492902000156. |
[30] |
E. Tadmor and W. Zhong, Entropy stable approximations of Navier-Stokes equations with no artificial numerical viscosity, J. Hyperbolic DEs, 3 (2006), 529-559.
doi: 10.1142/S0219891606000896. |
[1] |
Yinnian He, Pengzhan Huang, Jian Li. H2-stability of some second order fully discrete schemes for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2745-2780. doi: 10.3934/dcdsb.2018273 |
[2] |
Cleopatra Christoforou, Myrto Galanopoulou, Athanasios E. Tzavaras. Measure-valued solutions for the equations of polyconvex adiabatic thermoelasticity. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6175-6206. doi: 10.3934/dcds.2019269 |
[3] |
Maria Michaela Porzio, Flavia Smarrazzo, Alberto Tesei. Radon measure-valued solutions of unsteady filtration equations. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022040 |
[4] |
Andreas Hiltebrand, Siddhartha Mishra. Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography. Networks and Heterogeneous Media, 2016, 11 (1) : 145-162. doi: 10.3934/nhm.2016.11.145 |
[5] |
Nikolaos Halidias. Construction of positivity preserving numerical schemes for some multidimensional stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 153-160. doi: 10.3934/dcdsb.2015.20.153 |
[6] |
Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, 2021, 29 (5) : 2915-2944. doi: 10.3934/era.2021019 |
[7] |
Peter Anthony, Sergey Zelik. Infinite-energy solutions for the Navier-Stokes equations in a strip revisited. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1361-1393. doi: 10.3934/cpaa.2014.13.1361 |
[8] |
Yong Yang, Bingsheng Zhang. On the Kolmogorov entropy of the weak global attractor of 3D Navier-Stokes equations:Ⅰ. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2339-2350. doi: 10.3934/dcdsb.2017101 |
[9] |
Xiaoping Zhai, Hailong Ye. On global large energy solutions to the viscous shallow water equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4277-4293. doi: 10.3934/dcdsb.2020097 |
[10] |
Hamid Bellout, Jiří Neustupa, Patrick Penel. On a $\nu$-continuous family of strong solutions to the Euler or Navier-Stokes equations with the Navier-Type boundary condition. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1353-1373. doi: 10.3934/dcds.2010.27.1353 |
[11] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic and Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[12] |
Leonardi Filippo. A projection method for the computation of admissible measure valued solutions of the incompressible Euler equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : 941-961. doi: 10.3934/dcdss.2018056 |
[13] |
Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041 |
[14] |
Wenjun Wang, Lei Yao. Spherically symmetric Navier-Stokes equations with degenerate viscosity coefficients and vacuum. Communications on Pure and Applied Analysis, 2010, 9 (2) : 459-481. doi: 10.3934/cpaa.2010.9.459 |
[15] |
Casimir Emako, Farah Kanbar, Christian Klingenberg, Min Tang. A criterion for asymptotic preserving schemes of kinetic equations to be uniformly stationary preserving. Kinetic and Related Models, 2021, 14 (5) : 847-866. doi: 10.3934/krm.2021026 |
[16] |
Marcel Braukhoff, Ansgar Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3335-3355. doi: 10.3934/dcdsb.2020234 |
[17] |
Yi Zhou, Zhen Lei. Logarithmically improved criteria for Euler and Navier-Stokes equations. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2715-2719. doi: 10.3934/cpaa.2013.12.2715 |
[18] |
Michele Coti Zelati. Remarks on the approximation of the Navier-Stokes equations via the implicit Euler scheme. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2829-2838. doi: 10.3934/cpaa.2013.12.2829 |
[19] |
Carlo Morosi, Livio Pizzocchero. On the constants in a Kato inequality for the Euler and Navier-Stokes equations. Communications on Pure and Applied Analysis, 2012, 11 (2) : 557-586. doi: 10.3934/cpaa.2012.11.557 |
[20] |
Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]