-
Previous Article
Small perturbation of a semilinear pseudo-parabolic equation
- DCDS Home
- This Issue
-
Next Article
A priori estimates for semistable solutions of semilinear elliptic equations
Time periodic solutions to Navier-Stokes-Korteweg system with friction
1. | School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005 |
2. | School of Mathematical Sciences and Fujian Provincial Key Laboratory, on Mathematical Modeling and Scientific Computing, Xiamen University, Xiamen, 361005 |
References:
[1] | |
[2] |
D. Bresch, B. Desjardins and C. K. Lin, On some compressible fluid models: Korteweg, lubrication and shallow water systems, Comm. Partial Differential Equations, 28 (2003), 843-868.
doi: 10.1081/PDE-120020499. |
[3] |
Q. Chen and Z. Tan, Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamics equations, Nonlinear Anal., 72 (2010), 4438-4451.
doi: 10.1016/j.na.2010.02.019. |
[4] |
Z. Z. Chen, Q. H. Xiao and H. J. Zhao, Time periodic solutions of compressible fluid models of Korteweg type, it Math.Phys., Preprint, arXiv:1203.6529 (2012). |
[5] |
R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type, Ann. Inst. Henri Poincare Anal. Nonlinear, 18 (2001), 97-133.
doi: 10.1016/S0294-1449(00)00056-1. |
[6] |
R. J. Duan, S. Ukai, T. Yang and H. J. Zhao, Optimal decay estimates on the linearized Boltzmann equations with time dependent force and their applications, Comm. Math. Phys., 277 (2008), 189-236.
doi: 10.1007/s00220-007-0366-4. |
[7] |
B. Haspot, Existence of global weak solution for compressible fluid models of Korteweg type, J. Math. Fluid Mech., 13 (2011), 223-249.
doi: 10.1007/s00021-009-0013-2. |
[8] |
B. Haspot, Existence of global strong solution for the compressible Navier-Stokes system and the Korteweg system in two-dimension, Methods Appl. Anal., 20 (2013), 141-164, arXiv:1211.4819 (2012).
doi: 10.4310/MAA.2013.v20.n2.a3. |
[9] |
H. Hattori and D. Li, Solutions for two dimensional system for materials of Korteweg type, SIAM J. Math. Anal., 25 (1994), 85-98.
doi: 10.1137/S003614109223413X. |
[10] |
H. Hattori and D. Li, Golobal solutions of a high dimensional system for Korteweg materials, J. Math. Anal. Appl., 198 (1996), 84-97.
doi: 10.1006/jmaa.1996.0069. |
[11] |
S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics, PhD thesis, Kyoto University, 1983. |
[12] |
M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type, Ann. Inst. Henri Poincare Anal. Nonlinear, 25 (2008), 679-696.
doi: 10.1016/j.anihpc.2007.03.005. |
[13] |
Y. P. Li, Global existence and optimal decay rate of the compressible Navier-Stokes-Korteweg equations with external force, J. Math. Anal. Appl., 388 (2012), 1218-1232.
doi: 10.1016/j.jmaa.2011.11.006. |
[14] |
H. F. Ma, S. Ukai and T. Yang, Time periodic solutions of compressible Navier-Stokes equations, J. Differential Equations, 248 (2010), 2275-2293.
doi: 10.1016/j.jde.2009.11.031. |
[15] |
A. Matsumura and T. Nishida, The initial value problems for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104. |
[16] |
Z. Tan and H. Q. Wang, Time periodic solutions of compressible magnetohydrodynamic equations, Nonlinear Anal., 76 (2013), 153-164.
doi: 10.1016/j.na.2012.08.012. |
[17] |
M. E. Taylor, Partial Differential Equations III, Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4757-4187-2. |
[18] |
S. Ukai, Time periodic solutions of Boltzmann equation, Discrete Contin. Dynam. Systems, 14 (2006), 579-596.
doi: 10.3934/dcds.2006.14.579. |
[19] |
S. Ukai and T. Yang, The Boltzmann equation in the sapce $L^2\cap L^{\infty}_\beta$: global and time periodic solution, Analysis and Applications, 4 (2006), 263-310.
doi: 10.1142/S0219530506000784. |
[20] |
Y. J. Wang and Z. Tan, Optimal decay rates for the compressible fluid models of Korteweg type, J. Math. Anal. Appl., 379 (2011), 256-271.
doi: 10.1016/j.jmaa.2011.01.006. |
[21] |
X. Zhang and Z. Tan, Decay estimates of the non-isentropic compressible fluid models of Korteweg type in $\mathbbR^3$, Comm. Math. Sci., 12 (2014), 1437-1456.
doi: 10.4310/CMS.2014.v12.n8.a4. |
show all references
References:
[1] | |
[2] |
D. Bresch, B. Desjardins and C. K. Lin, On some compressible fluid models: Korteweg, lubrication and shallow water systems, Comm. Partial Differential Equations, 28 (2003), 843-868.
doi: 10.1081/PDE-120020499. |
[3] |
Q. Chen and Z. Tan, Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamics equations, Nonlinear Anal., 72 (2010), 4438-4451.
doi: 10.1016/j.na.2010.02.019. |
[4] |
Z. Z. Chen, Q. H. Xiao and H. J. Zhao, Time periodic solutions of compressible fluid models of Korteweg type, it Math.Phys., Preprint, arXiv:1203.6529 (2012). |
[5] |
R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type, Ann. Inst. Henri Poincare Anal. Nonlinear, 18 (2001), 97-133.
doi: 10.1016/S0294-1449(00)00056-1. |
[6] |
R. J. Duan, S. Ukai, T. Yang and H. J. Zhao, Optimal decay estimates on the linearized Boltzmann equations with time dependent force and their applications, Comm. Math. Phys., 277 (2008), 189-236.
doi: 10.1007/s00220-007-0366-4. |
[7] |
B. Haspot, Existence of global weak solution for compressible fluid models of Korteweg type, J. Math. Fluid Mech., 13 (2011), 223-249.
doi: 10.1007/s00021-009-0013-2. |
[8] |
B. Haspot, Existence of global strong solution for the compressible Navier-Stokes system and the Korteweg system in two-dimension, Methods Appl. Anal., 20 (2013), 141-164, arXiv:1211.4819 (2012).
doi: 10.4310/MAA.2013.v20.n2.a3. |
[9] |
H. Hattori and D. Li, Solutions for two dimensional system for materials of Korteweg type, SIAM J. Math. Anal., 25 (1994), 85-98.
doi: 10.1137/S003614109223413X. |
[10] |
H. Hattori and D. Li, Golobal solutions of a high dimensional system for Korteweg materials, J. Math. Anal. Appl., 198 (1996), 84-97.
doi: 10.1006/jmaa.1996.0069. |
[11] |
S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics, PhD thesis, Kyoto University, 1983. |
[12] |
M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type, Ann. Inst. Henri Poincare Anal. Nonlinear, 25 (2008), 679-696.
doi: 10.1016/j.anihpc.2007.03.005. |
[13] |
Y. P. Li, Global existence and optimal decay rate of the compressible Navier-Stokes-Korteweg equations with external force, J. Math. Anal. Appl., 388 (2012), 1218-1232.
doi: 10.1016/j.jmaa.2011.11.006. |
[14] |
H. F. Ma, S. Ukai and T. Yang, Time periodic solutions of compressible Navier-Stokes equations, J. Differential Equations, 248 (2010), 2275-2293.
doi: 10.1016/j.jde.2009.11.031. |
[15] |
A. Matsumura and T. Nishida, The initial value problems for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104. |
[16] |
Z. Tan and H. Q. Wang, Time periodic solutions of compressible magnetohydrodynamic equations, Nonlinear Anal., 76 (2013), 153-164.
doi: 10.1016/j.na.2012.08.012. |
[17] |
M. E. Taylor, Partial Differential Equations III, Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4757-4187-2. |
[18] |
S. Ukai, Time periodic solutions of Boltzmann equation, Discrete Contin. Dynam. Systems, 14 (2006), 579-596.
doi: 10.3934/dcds.2006.14.579. |
[19] |
S. Ukai and T. Yang, The Boltzmann equation in the sapce $L^2\cap L^{\infty}_\beta$: global and time periodic solution, Analysis and Applications, 4 (2006), 263-310.
doi: 10.1142/S0219530506000784. |
[20] |
Y. J. Wang and Z. Tan, Optimal decay rates for the compressible fluid models of Korteweg type, J. Math. Anal. Appl., 379 (2011), 256-271.
doi: 10.1016/j.jmaa.2011.01.006. |
[21] |
X. Zhang and Z. Tan, Decay estimates of the non-isentropic compressible fluid models of Korteweg type in $\mathbbR^3$, Comm. Math. Sci., 12 (2014), 1437-1456.
doi: 10.4310/CMS.2014.v12.n8.a4. |
[1] |
Wenjun Wang, Weike Wang. Decay rates of the compressible Navier-Stokes-Korteweg equations with potential forces. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 513-536. doi: 10.3934/dcds.2015.35.513 |
[2] |
Zhong Tan, Xu Zhang, Huaqiao Wang. Asymptotic behavior of Navier-Stokes-Korteweg with friction in $\mathbb{R}^{3}$. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2243-2259. doi: 10.3934/dcds.2014.34.2243 |
[3] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[4] |
Guochun Wu, Han Wang, Yinghui Zhang. Optimal time-decay rates of the compressible Navier–Stokes–Poisson system in $ \mathbb R^3 $. Electronic Research Archive, 2021, 29 (6) : 3889-3908. doi: 10.3934/era.2021067 |
[5] |
Tong Tang, Hongjun Gao. On the compressible Navier-Stokes-Korteweg equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2745-2766. doi: 10.3934/dcdsb.2016071 |
[6] |
Jianwei Yang, Peng Cheng, Yudong Wang. Asymptotic limit of a Navier-Stokes-Korteweg system with density-dependent viscosity. Electronic Research Announcements, 2015, 22: 20-31. doi: 10.3934/era.2015.22.20 |
[7] |
Yingshan Chen, Shijin Ding, Wenjun Wang. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5287-5307. doi: 10.3934/dcds.2016032 |
[8] |
Weike Wang, Xin Xu. Large time behavior of solution for the full compressible navier-stokes-maxwell system. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2283-2313. doi: 10.3934/cpaa.2015.14.2283 |
[9] |
Changchun Liu, Pingping Li. Time periodic solutions for a two-species chemotaxis-Navier-Stokes system. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4567-4585. doi: 10.3934/dcdsb.2020303 |
[10] |
J. Huang, Marius Paicu. Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4647-4669. doi: 10.3934/dcds.2014.34.4647 |
[11] |
Moez Daoulatli. Rates of decay for the wave systems with time dependent damping. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 407-443. doi: 10.3934/dcds.2011.31.407 |
[12] |
Chengxin Du, Changchun Liu. Time periodic solution to a two-species chemotaxis-Stokes system with $ p $-Laplacian diffusion. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4321-4345. doi: 10.3934/cpaa.2021162 |
[13] |
Grzegorz Karch, Xiaoxin Zheng. Time-dependent singularities in the Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3039-3057. doi: 10.3934/dcds.2015.35.3039 |
[14] |
Ryo Ikehata, Shingo Kitazaki. Optimal energy decay rates for some wave equations with double damping terms. Evolution Equations and Control Theory, 2019, 8 (4) : 825-846. doi: 10.3934/eect.2019040 |
[15] |
Yuhui Chen, Ronghua Pan, Leilei Tong. The sharp time decay rate of the isentropic Navier-Stokes system in $ {\mathop{\mathbb R\kern 0pt}\nolimits}^3 $. Electronic Research Archive, 2021, 29 (2) : 1945-1967. doi: 10.3934/era.2020099 |
[16] |
Konstantinos Chrysafinos. Error estimates for time-discretizations for the velocity tracking problem for Navier-Stokes flows by penalty methods. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 1077-1096. doi: 10.3934/dcdsb.2006.6.1077 |
[17] |
Xiaopeng Zhao. Space-time decay estimates of solutions to liquid crystal system in $\mathbb{R}^3$. Communications on Pure and Applied Analysis, 2019, 18 (1) : 1-13. doi: 10.3934/cpaa.2019001 |
[18] |
Teng Wang, Yi Wang. Large-time behaviors of the solution to 3D compressible Navier-Stokes equations in half space with Navier boundary conditions. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2811-2838. doi: 10.3934/cpaa.2021080 |
[19] |
Fritz Colonius, Guilherme Mazanti. Decay rates for stabilization of linear continuous-time systems with random switching. Mathematical Control and Related Fields, 2019, 9 (1) : 39-58. doi: 10.3934/mcrf.2019002 |
[20] |
Petr Kučera. The time-periodic solutions of the Navier-Stokes equations with mixed boundary conditions. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 325-337. doi: 10.3934/dcdss.2010.3.325 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]