# American Institute of Mathematical Sciences

February  2016, 36(2): 643-652. doi: 10.3934/dcds.2016.36.643

## Rotating periodic solutions of second order dissipative dynamical systems

 1 School of Mathematics and Statistics, & Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun, 130024, China 2 College of Mathematics, Jilin University, Changchun, 130012, China

Received  June 2014 Published  August 2015

This paper is devoted to the following second order dissipative dynamical system \begin{equation*} u''+cu'+ \nabla g(u)+h(u)=e(t) ~\mbox{in}~\mathbb{R}^n. \end{equation*} When $g(u)=g(|u|)$, $\nabla g$ is a coercive function and $h$ is bounded, we use the coincidence degree theory to obtain some existence results of rotating periodic solutions, i.e., $u(t+T)=Qu(t)$, $\forall t\in \mathbb{R}$, with $T>0$ and $Q$ an orthogonal matrix, for $g$ to be nonsingular and singular at zero respectively. Specially, when some strong force type assumption is supposed on $g$, we obtain some new existence results of non-collision solutions for singular systems.
Citation: Xiaojun Chang, Yong Li. Rotating periodic solutions of second order dissipative dynamical systems. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 643-652. doi: 10.3934/dcds.2016.36.643
##### References:
 [1] A. Ambrosetti and V. Coti Zelati, Periodic Solutions of Singular Lagrangian Systems, Progress in Nonlinear Differential Equations and Their Applications, 10, Birkhäuser, Boston, 1993. doi: 10.1007/978-1-4612-0319-3. [2] K. C. Chang, Methods in Nonlinear Analysis, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005. [3] J. F. Chu, P. J. Torres and M. R. Zhang, Periodic solutions of second order non-autonomous singular dynamical systems, J. Differential Equations, 239 (2007), 196-212. doi: 10.1016/j.jde.2007.05.007. [4] I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Results in Mathematics and Related Areas, 19, Springer, Berlin, 1990. doi: 10.1007/978-3-642-74331-3. [5] A. Fonda and R. Toader, Periodic orbits of radially symmetric Keplerian-like systems: A topological degree approach, J. Differential Equations, 244 (2008), 3235-3264. doi: 10.1016/j.jde.2007.11.005. [6] A. Fonda and J. A. Ureña, Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force, Discrete Contin. Dyn. Syst., 29 (2011), 169-192. doi: 10.3934/dcds.2011.29.169. [7] D. Franco and P. J. Torres, Periodic solutions of singular systems without the strong force condition, Proc. Amer. Math. Soc., 136 (2008), 1229-1236. doi: 10.1090/S0002-9939-07-09226-X. [8] D. Franco and J. R. L. Webb, Collisionless orbits of singular and non singular dynamical systems, Discrete Contin. Dyn. Syst., 15 (2006), 747-757. doi: 10.3934/dcds.2006.15.747. [9] W. B. Gordon, Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., 204 (1975), 113-135. doi: 10.1090/S0002-9947-1975-0377983-1. [10] P. Habets and L. Sanchez, Periodic solutions of dissipative dynamical systems with singular potentials, Differential Integral Equations, 3 (1990), 1139-1149. [11] Y. M. Long, Index Theory for Symplectic Paths with Applications, Progress in Mathematics, 207, Birkhäuser Verlag, Basel, 2002. doi: 10.1007/978-3-0348-8175-3. [12] J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems, CBMS Regional Conference Series in Mathematics, 40, American Mathematical Society, Providence, RI, 1979. [13] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, 74, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2061-7. [14] P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, 65, American Mathematical Society, Providence, RI, 1986. [15] P. J. Torres, Non-collision periodic solutions of forced dynamical systems with weak singularities, Discrete Contin. Dyn. Syst., 11 (2004), 693-698. doi: 10.3934/dcds.2004.11.693. [16] P. J. Torres, A. J. Ureña and M. Zamora, Periodic and quasi-periodic motions of a relativistic particle under a central force field, Bull. Lond. Math. Soc., 45 (2013), 140-152. doi: 10.1112/blms/bds076. [17] J. R. Ward, Periodic solutions of first order systems, Discrete Contin. Dyn. Syst., 33 (2013), 381-389. doi: 10.3934/dcds.2013.33.381. [18] M. R. Zhang, Periodic solutions of damped differential systems with repulsive singular forces, Proc. Amer. Math. Soc., 127 (1999), 401-407. doi: 10.1090/S0002-9939-99-05120-5.

show all references

##### References:
 [1] A. Ambrosetti and V. Coti Zelati, Periodic Solutions of Singular Lagrangian Systems, Progress in Nonlinear Differential Equations and Their Applications, 10, Birkhäuser, Boston, 1993. doi: 10.1007/978-1-4612-0319-3. [2] K. C. Chang, Methods in Nonlinear Analysis, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005. [3] J. F. Chu, P. J. Torres and M. R. Zhang, Periodic solutions of second order non-autonomous singular dynamical systems, J. Differential Equations, 239 (2007), 196-212. doi: 10.1016/j.jde.2007.05.007. [4] I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Results in Mathematics and Related Areas, 19, Springer, Berlin, 1990. doi: 10.1007/978-3-642-74331-3. [5] A. Fonda and R. Toader, Periodic orbits of radially symmetric Keplerian-like systems: A topological degree approach, J. Differential Equations, 244 (2008), 3235-3264. doi: 10.1016/j.jde.2007.11.005. [6] A. Fonda and J. A. Ureña, Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force, Discrete Contin. Dyn. Syst., 29 (2011), 169-192. doi: 10.3934/dcds.2011.29.169. [7] D. Franco and P. J. Torres, Periodic solutions of singular systems without the strong force condition, Proc. Amer. Math. Soc., 136 (2008), 1229-1236. doi: 10.1090/S0002-9939-07-09226-X. [8] D. Franco and J. R. L. Webb, Collisionless orbits of singular and non singular dynamical systems, Discrete Contin. Dyn. Syst., 15 (2006), 747-757. doi: 10.3934/dcds.2006.15.747. [9] W. B. Gordon, Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., 204 (1975), 113-135. doi: 10.1090/S0002-9947-1975-0377983-1. [10] P. Habets and L. Sanchez, Periodic solutions of dissipative dynamical systems with singular potentials, Differential Integral Equations, 3 (1990), 1139-1149. [11] Y. M. Long, Index Theory for Symplectic Paths with Applications, Progress in Mathematics, 207, Birkhäuser Verlag, Basel, 2002. doi: 10.1007/978-3-0348-8175-3. [12] J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems, CBMS Regional Conference Series in Mathematics, 40, American Mathematical Society, Providence, RI, 1979. [13] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, 74, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2061-7. [14] P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, 65, American Mathematical Society, Providence, RI, 1986. [15] P. J. Torres, Non-collision periodic solutions of forced dynamical systems with weak singularities, Discrete Contin. Dyn. Syst., 11 (2004), 693-698. doi: 10.3934/dcds.2004.11.693. [16] P. J. Torres, A. J. Ureña and M. Zamora, Periodic and quasi-periodic motions of a relativistic particle under a central force field, Bull. Lond. Math. Soc., 45 (2013), 140-152. doi: 10.1112/blms/bds076. [17] J. R. Ward, Periodic solutions of first order systems, Discrete Contin. Dyn. Syst., 33 (2013), 381-389. doi: 10.3934/dcds.2013.33.381. [18] M. R. Zhang, Periodic solutions of damped differential systems with repulsive singular forces, Proc. Amer. Math. Soc., 127 (1999), 401-407. doi: 10.1090/S0002-9939-99-05120-5.
 [1] Marc Henrard. Homoclinic and multibump solutions for perturbed second order systems using topological degree. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 765-782. doi: 10.3934/dcds.1999.5.765 [2] Xiangjin Xu. Multiple solutions of super-quadratic second order dynamical systems. Conference Publications, 2003, 2003 (Special) : 926-934. doi: 10.3934/proc.2003.2003.926 [3] Juhong Kuang, Weiyi Chen, Zhiming Guo. Periodic solutions with prescribed minimal period for second order even Hamiltonian systems. Communications on Pure and Applied Analysis, 2022, 21 (1) : 47-59. doi: 10.3934/cpaa.2021166 [4] Pablo Amster, Mónica Clapp. Periodic solutions of resonant systems with rapidly rotating nonlinearities. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 373-383. doi: 10.3934/dcds.2011.31.373 [5] Anna Capietto, Walter Dambrosio. A topological degree approach to sublinear systems of second order differential equations. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 861-874. doi: 10.3934/dcds.2000.6.861 [6] Ahmed Y. Abdallah. Exponential attractors for second order lattice dynamical systems. Communications on Pure and Applied Analysis, 2009, 8 (3) : 803-813. doi: 10.3934/cpaa.2009.8.803 [7] Jean Mawhin. Periodic solutions of second order Lagrangian difference systems with bounded or singular $\phi$-Laplacian and periodic potential. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1065-1076. doi: 10.3934/dcdss.2013.6.1065 [8] Xingyong Zhang, Xianhua Tang. Some united existence results of periodic solutions for non-quadratic second order Hamiltonian systems. Communications on Pure and Applied Analysis, 2014, 13 (1) : 75-95. doi: 10.3934/cpaa.2014.13.75 [9] Yan Liu, Fei Guo. Multiplicity of periodic solutions for second-order perturbed Hamiltonian systems with local superquadratic conditions. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022098 [10] George J. Bautista, Ademir F. Pazoto. Decay of solutions for a dissipative higher-order Boussinesq system on a periodic domain. Communications on Pure and Applied Analysis, 2020, 19 (2) : 747-769. doi: 10.3934/cpaa.2020035 [11] Norimichi Hirano, Zhi-Qiang Wang. Subharmonic solutions for second order Hamiltonian systems. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 467-474. doi: 10.3934/dcds.1998.4.467 [12] J. R. Ward. Periodic solutions of first order systems. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 381-389. doi: 10.3934/dcds.2013.33.381 [13] Qiong Meng, X. H. Tang. Solutions of a second-order Hamiltonian system with periodic boundary conditions. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1053-1067. doi: 10.3934/cpaa.2010.9.1053 [14] Xuelei Wang, Dingbian Qian, Xiying Sun. Periodic solutions of second order equations with asymptotical non-resonance. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4715-4726. doi: 10.3934/dcds.2018207 [15] Chiara Zanini, Fabio Zanolin. Periodic solutions for a class of second order ODEs with a Nagumo cubic type nonlinearity. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 4045-4067. doi: 10.3934/dcds.2012.32.4045 [16] Zhiming Guo, Xiaomin Zhang. Multiplicity results for periodic solutions to a class of second order delay differential equations. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1529-1542. doi: 10.3934/cpaa.2010.9.1529 [17] C. Rebelo. Multiple periodic solutions of second order equations with asymmetric nonlinearities. Discrete and Continuous Dynamical Systems, 1997, 3 (1) : 25-34. doi: 10.3934/dcds.1997.3.25 [18] Jaume Llibre, Amar Makhlouf. Periodic solutions of some classes of continuous second-order differential equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 477-482. doi: 10.3934/dcdsb.2017022 [19] Zaihong Wang. Periodic solutions of the second order differential equations with asymmetric nonlinearities depending on the derivatives. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 751-770. doi: 10.3934/dcds.2003.9.751 [20] Xuan Wu, Huafeng Xiao. Periodic solutions for a class of second-order differential delay equations. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4253-4269. doi: 10.3934/cpaa.2021159

2020 Impact Factor: 1.392