• Previous Article
    Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials
  • DCDS Home
  • This Issue
  • Next Article
    Rotating periodic solutions of second order dissipative dynamical systems
February  2016, 36(2): 653-660. doi: 10.3934/dcds.2016.36.653

Smooth local solutions to Weingarten equations and $\sigma_k$-equations

1. 

Department of Mathematics, University of California, Santa Barbara, CA 93106, United States

2. 

Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, United States

Received  June 2014 Revised  March 2015 Published  August 2015

In this paper, we study the existence of smooth local solutions to Weingarten equations and $\sigma_k$-equations. We will prove that, for $2\le k\le n-1$, the Weingarten equations and the $\sigma_k$-equations always have smooth local solutions regardless of the sign of the functions in the right-hand side of the equations. We will demonstrate that the associated linearized equations are uniformly elliptic if we choose the initial approximate solutions appropriately.
Citation: Tiancong Chen, Qing Han. Smooth local solutions to Weingarten equations and $\sigma_k$-equations. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 653-660. doi: 10.3934/dcds.2016.36.653
References:
[1]

L. Caffarelli, L. Nirenberg and J. Spruck, Nonlinear second-order elliptic equations, IV. Starshaped compact Weingarten hypersurfaces, Current topics in partial differential equations, Kinokuniya, Tokyo, (1986), 1-26.

[2]

L. Caffarelli, L. Nirenberg and J. Spruck, Nonlinear second-order elliptic equations V. The Dirichlet problem for Weingarten Hypersurfaces, Comm. Pure Appl. Math., 41 (1988), 47-70. doi: 10.1002/cpa.3160410105.

[3]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, 3rd ed., Springer, 2001.

[4]

Q. Han, On the isometric embedding of surfaces with Gauss curvature changing sign cleanly, Comm. Pure Appl. Math., 58 (2005), 285-295. doi: 10.1002/cpa.20054.

[5]

Q. Han, Local solutions to a class of Monge-Ampère equations of the mixed type, Duke Math. J., 136 (2007), 421-473.

[6]

Q. Han, J.-X. Hong and C.-S. Lin, Local isometric embedding of surfaces with nonpositive gaussian curvature, J. Diff. Geometry, 63 (2003), 475-520.

[7]

J.-X. Hong and C. Zuily, Existence of $C^\infty$ local solutions for the Monge-Ampère equation, Invent. Math., 89 (1987), 645-661. doi: 10.1007/BF01388988.

[8]

C.-S. Lin, The local isometric embedding in $\mathbbR^3$ of 2-dimensional Riemannian manifolds with nonnegative curvature, J. Diff. Geometry, 21 (1985), 213-230.

[9]

C.-S. Lin, The local isometric embedding in $\mathbbR^3$ of two dimensional Riemannian manifolds with Gaussian curvature changing sign clearly, Comm. Pure Appl. Math., 39 (1986), 867-887. doi: 10.1002/cpa.3160390607.

[10]

W.-M. Sheng, N. Trudinger and X.-J. Wang, Prescribed Weingarten curvature equations, Recent Development in Geometry and Analysis, International Press, 23 (2012), 359-386.

[11]

X.-J. Wang, The $k$-Hessian equation, Geometric analysis and PDEs, 177-252, Lecture Notes in Math., 1977, Springer, 2009. doi: 10.1007/978-3-642-01674-5_5.

show all references

References:
[1]

L. Caffarelli, L. Nirenberg and J. Spruck, Nonlinear second-order elliptic equations, IV. Starshaped compact Weingarten hypersurfaces, Current topics in partial differential equations, Kinokuniya, Tokyo, (1986), 1-26.

[2]

L. Caffarelli, L. Nirenberg and J. Spruck, Nonlinear second-order elliptic equations V. The Dirichlet problem for Weingarten Hypersurfaces, Comm. Pure Appl. Math., 41 (1988), 47-70. doi: 10.1002/cpa.3160410105.

[3]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, 3rd ed., Springer, 2001.

[4]

Q. Han, On the isometric embedding of surfaces with Gauss curvature changing sign cleanly, Comm. Pure Appl. Math., 58 (2005), 285-295. doi: 10.1002/cpa.20054.

[5]

Q. Han, Local solutions to a class of Monge-Ampère equations of the mixed type, Duke Math. J., 136 (2007), 421-473.

[6]

Q. Han, J.-X. Hong and C.-S. Lin, Local isometric embedding of surfaces with nonpositive gaussian curvature, J. Diff. Geometry, 63 (2003), 475-520.

[7]

J.-X. Hong and C. Zuily, Existence of $C^\infty$ local solutions for the Monge-Ampère equation, Invent. Math., 89 (1987), 645-661. doi: 10.1007/BF01388988.

[8]

C.-S. Lin, The local isometric embedding in $\mathbbR^3$ of 2-dimensional Riemannian manifolds with nonnegative curvature, J. Diff. Geometry, 21 (1985), 213-230.

[9]

C.-S. Lin, The local isometric embedding in $\mathbbR^3$ of two dimensional Riemannian manifolds with Gaussian curvature changing sign clearly, Comm. Pure Appl. Math., 39 (1986), 867-887. doi: 10.1002/cpa.3160390607.

[10]

W.-M. Sheng, N. Trudinger and X.-J. Wang, Prescribed Weingarten curvature equations, Recent Development in Geometry and Analysis, International Press, 23 (2012), 359-386.

[11]

X.-J. Wang, The $k$-Hessian equation, Geometric analysis and PDEs, 177-252, Lecture Notes in Math., 1977, Springer, 2009. doi: 10.1007/978-3-642-01674-5_5.

[1]

Tong Tang, Hongjun Gao. Local strong solutions to the compressible viscous magnetohydrodynamic equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1617-1633. doi: 10.3934/dcdsb.2016014

[2]

Kods Hassine. Existence and uniqueness of radial solutions for Hardy-Hénon equations involving k-Hessian operators. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022084

[3]

Veronica Felli, Ana Primo. Classification of local asymptotics for solutions to heat equations with inverse-square potentials. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 65-107. doi: 10.3934/dcds.2011.31.65

[4]

Bingyuan Huang, Shijin Ding, Huanyao Wen. Local classical solutions of compressible Navier-Stokes-Smoluchowski equations with vacuum. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1717-1752. doi: 10.3934/dcdss.2016072

[5]

Emmanuele DiBenedetto, Ugo Gianazza and Vincenzo Vespri. Intrinsic Harnack estimates for nonnegative local solutions of degenerate parabolic equations. Electronic Research Announcements, 2006, 12: 95-99.

[6]

Jens Lorenz, Wilberclay G. Melo, Natã Firmino Rocha. The Magneto–Hydrodynamic equations: Local theory and blow-up of solutions. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3819-3841. doi: 10.3934/dcdsb.2018332

[7]

Joelma Azevedo, Juan Carlos Pozo, Arlúcio Viana. Global solutions to the non-local Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2515-2535. doi: 10.3934/dcdsb.2021146

[8]

Tuan Anh Dao, Hironori Michihisa. Study of semi-linear $ \sigma $-evolution equations with frictional and visco-elastic damping. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1581-1608. doi: 10.3934/cpaa.2020079

[9]

Neil S. Trudinger. On the local theory of prescribed Jacobian equations. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1663-1681. doi: 10.3934/dcds.2014.34.1663

[10]

Simona Fornaro, Ugo Gianazza. Local properties of non-negative solutions to some doubly non-linear degenerate parabolic equations. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 481-492. doi: 10.3934/dcds.2010.26.481

[11]

Imran H. Biswas, Indranil Chowdhury. On the differentiability of the solutions of non-local Isaacs equations involving $\frac{1}{2}$-Laplacian. Communications on Pure and Applied Analysis, 2016, 15 (3) : 907-927. doi: 10.3934/cpaa.2016.15.907

[12]

Thi Tuyen Nguyen. Large time behavior of solutions of local and nonlocal nondegenerate Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator. Communications on Pure and Applied Analysis, 2019, 18 (3) : 999-1021. doi: 10.3934/cpaa.2019049

[13]

Yu-Zhu Wang, Yin-Xia Wang. Local existence of strong solutions to the three dimensional compressible MHD equations with partial viscosity. Communications on Pure and Applied Analysis, 2013, 12 (2) : 851-866. doi: 10.3934/cpaa.2013.12.851

[14]

Huxiao Luo, Xianhua Tang, Zu Gao. Sign-changing solutions for non-local elliptic equations with asymptotically linear term. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1147-1159. doi: 10.3934/cpaa.2018055

[15]

Xiaojie Hou, Yi Li. Local stability of traveling-wave solutions of nonlinear reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 681-701. doi: 10.3934/dcds.2006.15.681

[16]

Hantaek Bae, Rafael Granero-Belinchón, Omar Lazar. On the local and global existence of solutions to 1d transport equations with nonlocal velocity. Networks and Heterogeneous Media, 2019, 14 (3) : 471-487. doi: 10.3934/nhm.2019019

[17]

Long Fan, Cheng-Jie Liu, Lizhi Ruan. Local well-posedness of solutions to the boundary layer equations for compressible two-fluid flow. Electronic Research Archive, 2021, 29 (6) : 4009-4050. doi: 10.3934/era.2021070

[18]

Kwangseok Choe, Hyungjin Huh. Chern-Simons gauged sigma model into $ \mathbb{H}^2 $ and its self-dual equations. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4613-4646. doi: 10.3934/dcds.2019189

[19]

Jae-Myoung  Kim. Local regularity of the magnetohydrodynamics equations near the curved boundary. Communications on Pure and Applied Analysis, 2016, 15 (2) : 507-517. doi: 10.3934/cpaa.2016.15.507

[20]

Alberto Ferrero, Filippo Gazzola, Hans-Christoph Grunau. Decay and local eventual positivity for biharmonic parabolic equations. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1129-1157. doi: 10.3934/dcds.2008.21.1129

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (123)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]