-
Previous Article
Finite-time blow-up and extinction rates of solutions to an initial Neumann problem involving the $p(x,t)-Laplace$ operator and a non-local term
- DCDS Home
- This Issue
-
Next Article
Existence of solutions for a class of p-Laplacian type equation with critical growth and potential vanishing at infinity
The Dirichlet problem for Hessian type elliptic equations on Riemannian manifolds
1. | Department of Mathematics, The Ohio State University, Columbus, OH 43210, United States |
2. | Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, China |
References:
[1] |
A. D. Alexandrov, Uniqueness theorems for surfaces in the large, I, Vestnik Leningrad. Univ., 11 (1956), 5-17. |
[2] |
L. A. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations III: Functions of eigenvalues of the Hessians, Acta Math., 155 (1985), 261-301.
doi: 10.1007/BF02392544. |
[3] |
S. Y. Cheng and S. T. Yau, On the regularity of the solution of the n-dimensional Minkowski problem, Comm. Pure Applied Math., 29 (1976), 495-516.
doi: 10.1002/cpa.3160290504. |
[4] |
S. S. Chern, Integral formulas for hypersurfaces in Euclidean space and their applications to uniqueness theorems, J. Math. Mech., 8 (1959), 947-955. |
[5] |
B. Guan, Second order estimates and regularity for fully nonlinear elliptic equations on Riemannian manifolds, Duke Math. J., 163 (2014), 1491-1524.
doi: 10.1215/00127094-2713591. |
[6] |
B. Guan, The Dirichlet problem for fully nonlinear elliptic equations on Riemannian manifolds,, preprint, ().
|
[7] |
B. Guan and P.-F. Guan, Closed hypersurfaces of prescribed curvatures, Ann. Math. (2), 156 (2002), 655-673.
doi: 10.2307/3597202. |
[8] |
B. Guan and H.-M. Jiao, Second order estimates for Hessian type fully nonlinear elliptic equations on Riemannian manifolds,, to appear in Calc. Var. PDE., ().
|
[9] |
B. Guan, S.-J. Shi and Z.-N. Sui, On estimates for fully nonlinear parabolic equations on Riemannian manifolds,, preprint, ().
|
[10] |
B. Guan and J. Spruck, Interior gradient estimates for solutions of prescribed curvature equations of parabolic type, Indiana Univ. Math. J., 40 (1991), 1471-1481.
doi: 10.1512/iumj.1991.40.40066. |
[11] |
P.-F. Guan, J.-F. Li and Y.-Y. Li, Hypersurfaces of prescribed curvature measures, Duke Math. J., 161 (2012), 1927-1942.
doi: 10.1215/00127094-1645550. |
[12] |
P.-F. Guan and Y.-Y. Li, $C^{1,1}$ Regularity for solutions of a problem of Alexandrov, Comm. Pure Applied Math., 50 (1997), 789-811.
doi: 10.1002/(SICI)1097-0312(199708)50:8<789::AID-CPA4>3.0.CO;2-2. |
[13] |
P.-F. Guan and X.-N. Ma, The Christoffel-Minkowski problem. I. Convexity of solutions of a Hessian equation, Invent. Math., 151 (2003), 553-577.
doi: 10.1007/s00222-002-0259-2. |
[14] |
N. J. Korevaar, A priori gradient bounds for solutions to elliptic Weingarten equations, Ann. Inst. Henri Poincaré, Analyse Non Linéaire, 4 (1987), 405-421. |
[15] |
Y.-Y. Li, Interior gradient estimates for solutions of certain fully nonlinear elliptic equations, J. Diff. Equations, 90 (1991), 172-185.
doi: 10.1016/0022-0396(91)90166-7. |
[16] |
L. Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Applied Math., 6 (1953), 337-394.
doi: 10.1002/cpa.3160060303. |
[17] |
A. V. Pogorelov, Regularity of a convex surface with given Gaussian curvature, Mat. Sb., 31 (1952), 88-103. |
[18] |
A. V. Pogorelov, The Minkowski Multidimentional Problem, Winston, Washington, 1978. |
[19] |
N. S. Trudinger, The Dirichlet problem for the prescribed curvature equations, Arch. National Mech. Anal., 111 (1990), 153-179.
doi: 10.1007/BF00375406. |
[20] |
J. Urbas, Hessian equations on compact Riemannian manifolds, Nonlinear Problems in Mathematical Physics and Related Topics II, Kluwer/Plenum, New York, 2 (2002), 367-377.
doi: 10.1007/978-1-4615-0701-7_20. |
show all references
References:
[1] |
A. D. Alexandrov, Uniqueness theorems for surfaces in the large, I, Vestnik Leningrad. Univ., 11 (1956), 5-17. |
[2] |
L. A. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations III: Functions of eigenvalues of the Hessians, Acta Math., 155 (1985), 261-301.
doi: 10.1007/BF02392544. |
[3] |
S. Y. Cheng and S. T. Yau, On the regularity of the solution of the n-dimensional Minkowski problem, Comm. Pure Applied Math., 29 (1976), 495-516.
doi: 10.1002/cpa.3160290504. |
[4] |
S. S. Chern, Integral formulas for hypersurfaces in Euclidean space and their applications to uniqueness theorems, J. Math. Mech., 8 (1959), 947-955. |
[5] |
B. Guan, Second order estimates and regularity for fully nonlinear elliptic equations on Riemannian manifolds, Duke Math. J., 163 (2014), 1491-1524.
doi: 10.1215/00127094-2713591. |
[6] |
B. Guan, The Dirichlet problem for fully nonlinear elliptic equations on Riemannian manifolds,, preprint, ().
|
[7] |
B. Guan and P.-F. Guan, Closed hypersurfaces of prescribed curvatures, Ann. Math. (2), 156 (2002), 655-673.
doi: 10.2307/3597202. |
[8] |
B. Guan and H.-M. Jiao, Second order estimates for Hessian type fully nonlinear elliptic equations on Riemannian manifolds,, to appear in Calc. Var. PDE., ().
|
[9] |
B. Guan, S.-J. Shi and Z.-N. Sui, On estimates for fully nonlinear parabolic equations on Riemannian manifolds,, preprint, ().
|
[10] |
B. Guan and J. Spruck, Interior gradient estimates for solutions of prescribed curvature equations of parabolic type, Indiana Univ. Math. J., 40 (1991), 1471-1481.
doi: 10.1512/iumj.1991.40.40066. |
[11] |
P.-F. Guan, J.-F. Li and Y.-Y. Li, Hypersurfaces of prescribed curvature measures, Duke Math. J., 161 (2012), 1927-1942.
doi: 10.1215/00127094-1645550. |
[12] |
P.-F. Guan and Y.-Y. Li, $C^{1,1}$ Regularity for solutions of a problem of Alexandrov, Comm. Pure Applied Math., 50 (1997), 789-811.
doi: 10.1002/(SICI)1097-0312(199708)50:8<789::AID-CPA4>3.0.CO;2-2. |
[13] |
P.-F. Guan and X.-N. Ma, The Christoffel-Minkowski problem. I. Convexity of solutions of a Hessian equation, Invent. Math., 151 (2003), 553-577.
doi: 10.1007/s00222-002-0259-2. |
[14] |
N. J. Korevaar, A priori gradient bounds for solutions to elliptic Weingarten equations, Ann. Inst. Henri Poincaré, Analyse Non Linéaire, 4 (1987), 405-421. |
[15] |
Y.-Y. Li, Interior gradient estimates for solutions of certain fully nonlinear elliptic equations, J. Diff. Equations, 90 (1991), 172-185.
doi: 10.1016/0022-0396(91)90166-7. |
[16] |
L. Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Applied Math., 6 (1953), 337-394.
doi: 10.1002/cpa.3160060303. |
[17] |
A. V. Pogorelov, Regularity of a convex surface with given Gaussian curvature, Mat. Sb., 31 (1952), 88-103. |
[18] |
A. V. Pogorelov, The Minkowski Multidimentional Problem, Winston, Washington, 1978. |
[19] |
N. S. Trudinger, The Dirichlet problem for the prescribed curvature equations, Arch. National Mech. Anal., 111 (1990), 153-179.
doi: 10.1007/BF00375406. |
[20] |
J. Urbas, Hessian equations on compact Riemannian manifolds, Nonlinear Problems in Mathematical Physics and Related Topics II, Kluwer/Plenum, New York, 2 (2002), 367-377.
doi: 10.1007/978-1-4615-0701-7_20. |
[1] |
Weisong Dong, Tingting Wang, Gejun Bao. A priori estimates for the obstacle problem of Hessian type equations on Riemannian manifolds. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1769-1780. doi: 10.3934/cpaa.2016013 |
[2] |
Chunhui Qiu, Rirong Yuan. On the Dirichlet problem for fully nonlinear elliptic equations on annuli of metric cones. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5707-5730. doi: 10.3934/dcds.2017247 |
[3] |
Martino Bardi, Paola Mannucci. On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2006, 5 (4) : 709-731. doi: 10.3934/cpaa.2006.5.709 |
[4] |
Paola Mannucci. The Dirichlet problem for fully nonlinear elliptic equations non-degenerate in a fixed direction. Communications on Pure and Applied Analysis, 2014, 13 (1) : 119-133. doi: 10.3934/cpaa.2014.13.119 |
[5] |
Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601 |
[6] |
Isabeau Birindelli, Francoise Demengel. The dirichlet problem for singluar fully nonlinear operators. Conference Publications, 2007, 2007 (Special) : 110-121. doi: 10.3934/proc.2007.2007.110 |
[7] |
Sándor Kelemen, Pavol Quittner. Boundedness and a priori estimates of solutions to elliptic systems with Dirichlet-Neumann boundary conditions. Communications on Pure and Applied Analysis, 2010, 9 (3) : 731-740. doi: 10.3934/cpaa.2010.9.731 |
[8] |
D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure and Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499 |
[9] |
Italo Capuzzo Dolcetta, Antonio Vitolo. Glaeser's type gradient estimates for non-negative solutions of fully nonlinear elliptic equations. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 539-557. doi: 10.3934/dcds.2010.28.539 |
[10] |
Yu-Zhao Wang. $ \mathcal{W}$-Entropy formulae and differential Harnack estimates for porous medium equations on Riemannian manifolds. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2441-2454. doi: 10.3934/cpaa.2018116 |
[11] |
Michael Kühn. Power- and Log-concavity of viscosity solutions to some elliptic Dirichlet problems. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2773-2788. doi: 10.3934/cpaa.2018131 |
[12] |
Marco Ghimenti, A. M. Micheletti. Non degeneracy for solutions of singularly perturbed nonlinear elliptic problems on symmetric Riemannian manifolds. Communications on Pure and Applied Analysis, 2013, 12 (2) : 679-693. doi: 10.3934/cpaa.2013.12.679 |
[13] |
Limei Dai. Entire solutions with asymptotic behavior of fully nonlinear uniformly elliptic equations. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1707-1714. doi: 10.3934/cpaa.2011.10.1707 |
[14] |
Pierpaolo Soravia. Uniqueness results for fully nonlinear degenerate elliptic equations with discontinuous coefficients. Communications on Pure and Applied Analysis, 2006, 5 (1) : 213-240. doi: 10.3934/cpaa.2006.5.213 |
[15] |
Hongxia Zhang, Ying Wang. Liouville results for fully nonlinear integral elliptic equations in exterior domains. Communications on Pure and Applied Analysis, 2018, 17 (1) : 85-112. doi: 10.3934/cpaa.2018006 |
[16] |
Lidan Wang, Lihe Wang, Chunqin Zhou. Classification of positive solutions for fully nonlinear elliptic equations in unbounded cylinders. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1241-1261. doi: 10.3934/cpaa.2021019 |
[17] |
Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771 |
[18] |
Agnid Banerjee. A note on the unique continuation property for fully nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2015, 14 (2) : 623-626. doi: 10.3934/cpaa.2015.14.623 |
[19] |
Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128 |
[20] |
Jianguo Huang, Jun Zou. Uniform a priori estimates for elliptic and static Maxwell interface problems. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 145-170. doi: 10.3934/dcdsb.2007.7.145 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]