\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

$2\pi$-Periodic self-similar solutions for the anisotropic affine curve shortening problem II

Abstract Related Papers Cited by
  • The existence of $2\pi$-periodic positive solutions of the equation $$ u'' + u = \displaystyle{\frac{a(x)}{u^3}} $$ is studied, where $a$ is a positive smooth $2\pi$-periodic function. Under some non-degenerate conditions on $a$, the existence of $2\pi$-periodic solutions to the equation is established.
    Mathematics Subject Classification: Primary: 34B15, 34B16; Secondary: 44J99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    U. Abresch and J. Langer, The normalized curved shortening flow and homothetic solutions, J. Differential Geometry, 23 (1986), 175-196.

    [2]

    J. Ai, K. S. Chou and J. Wei, Self-similar solutions for the anisotropic affine curve shortening problem, Calc. Var., 13 (2001), 311-337.doi: 10.1007/s005260000075.

    [3]

    S. Altschuler, Singularities of the curve shrinking flow for space curves, J. Differential Geometry, 34 (1991), 491-514.

    [4]

    B. Andrews, Contraction of convex hypersurfaces by their affine normal, J. Differential Geometry, 43 (1996), 207-230.

    [5]

    B. Andrews, Evolving convex curves, Calc. Var., 7 (1998), 315-371.doi: 10.1007/s005260050111.

    [6]

    S. Angenent, On the formation of singularities in the curve shortening flow, J. Differential Geometry, 33 (1991), 601-633.

    [7]

    S. Angenent and M. E. Gurtin, Multiphase thermodynamics with interfacial structure evolution of an isothermal interface, Arch. Rational Mech. Anal., 108 (1989), 323-391.doi: 10.1007/BF01041068.

    [8]

    W. X. Chen, $L_p$-Minkowski problem with not necessarily positive data, Adv. in Math., 201 (2006), 77-89.doi: 10.1016/j.aim.2004.11.007.

    [9]

    K. S. Chou and L. Zhang, On the uniqueness of stable ultimate shapes for the anisotropic curve-shorting problem, Manuscripta Math., 102 (2000), 101-110.doi: 10.1007/s002291020101.

    [10]

    K. S. Chou and X. P. Zhu, Anisotropic flows for convex plane curves, Duke Math. J., 97 (1999), 579-619.doi: 10.1215/S0012-7094-99-09722-3.

    [11]

    M. del Pino, R. Manásevich and A. Montero, $T$-periodic solutions for some second order differential equation with singularities, Proc. Roy. Soc. Edinburgh, Sect. A, 120 (1992), 231-243.doi: 10.1017/S030821050003211X.

    [12]

    C. Dohmen and Y. Giga, Self-similar shrinking curves for anisotropic curvature flow equations, Proc. Japan Acad., Ser. A, 70 (1994), 252-255.doi: 10.3792/pjaa.70.252.

    [13]

    C. Dohmen, Y. Giga and N. Mizoguchi, Existence of self-similar shrinking curves for anisotropic curvature flow equations, Calc. Var., 4 (1996), 103-119.doi: 10.1007/BF01189949.

    [14]

    I. Fonseca and W. Gangbo, Degree Theory in Analysis and Applications, Oxford Science Publications, 1995.

    [15]

    M. E. Gage, Evolving plane curve by curvature in relative geometries, Duke Math. J., 72 (1993), 441-466.doi: 10.1215/S0012-7094-93-07216-X.

    [16]

    M. E. Gage and R. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geometry, 23 (1986), 69-96.

    [17]

    M. E. Gage and Y. Li, Evolving plane curve by curvature in relative geometries II, Duke Math. J., 75 (1994), 79-98.doi: 10.1215/S0012-7094-94-07503-0.

    [18]

    M. Grayson, The heat equation shrinking embedded curves to round points, J. Differential Geometry, 26 (1987), 285-314.

    [19]

    M. E. Gurtin, Thermodynamics of Evolving Phase Boundaries in the Plane, Clarendon Press, Oxford 1993.

    [20]

    M.-Y. Jiang, Remarks on the 2-dimensional $L_p$-Minkowski problem, Advanced Nonlinear Studies, 10 (2010), 297-313.

    [21]

    M.-Y. Jiang, L. Wang and J. Wei, $2\pi$-periodic self-similar solutions for the anisotropic affine curve shortening problem, Calc. Var., 41 (2011), 535-565.doi: 10.1007/s00526-010-0375-6.

    [22]

    H. Matano and J. Wei, On anisotropic curvature flow equations, preprint.

    [23]

    G. Sapiro and A. Tannenbaum, On affine plane curve evolution, J. Funct. Anal., 119 (1994), 79-120.doi: 10.1006/jfan.1994.1004.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(115) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return