\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A perturbation result for system of Schrödinger equations of Bose-Einstein condensates in $\mathbb{R}^3$

Abstract Related Papers Cited by
  • We are concerned with the existence of positive solutions for a coupled Schrödinger system \begin{equation*} \left\{ \begin{aligned} &-\Delta{u}_1+{\lambda}_1 {u}_1={\mu}_1 {u}_1^3+\varepsilon \beta(x) {u}_1 {u}_2^2 & ~~in &~~~~ \mathbb{R}^3,\\ &-\Delta{u}_2+{\lambda}_2 {u}_2={\mu}_2 {u}_2^3+\varepsilon \beta(x) {u}_1^2 {u}_2 & ~~in & ~~~~\mathbb{R}^3,\\ &{u}_1>0, ~~{u}_2>0& ~~in & ~~~~\mathbb{R}^3,\\ &{u}_1\in H^1(\mathbb{R}^3),~~{u}_2\in H^1(\mathbb{R}^3), \end{aligned} \right. \end{equation*} where ${\lambda}_1,{\lambda}_2,{\mu}_1,{\mu}_2$ are positive constants. We use perturbation methods to prove that if $\beta \in L^r(\mathbb{R}^3)(r\geq 3)$ doesn't change sign, as corresponding $\varepsilon$ is sufficiently small the system has a positive solution of which both components are positive. Our results is also true for domain $\mathbb{R}^{2}$ and for domain $ \mathbb {R}^{N}, N \geq 4 $ when the similar system is subcritical.
    Mathematics Subject Classification: Primary: 35B20; Secondary: 35J50.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Ambrosetti, On Schrödinger-Poisson systems, Milan journal of mathematics, 76 (2008), 257-274.doi: 10.1007/s00032-008-0094-z.

    [2]

    A. Ambrosetti, J. Garcia Azorero and I. Peral, Remarks on a class of semilinear elliptic equations on $\mathbb R^n$, via perturbation methods, Advanced Nonlinear Studies, 1 (2001), 1-13.

    [3]

    A. Ambrosetti and A. Malchiodi, Perturbation Methods and Semilinear Elliptic Problems on $\mathbb R^n$, Progress in Mathematics, 240, Birkhäuser Verlag, Basel, 2006.

    [4]

    T. Bartsch, E. N. Dancer and Z. Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differential Equations, 37 (2010), 345-361.doi: 10.1007/s00526-009-0265-y.

    [5]

    H. Berestycki and P. L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.doi: 10.1007/BF00250555.

    [6]

    H. Berestycki and P. L. Lions, Nonlinear scalar field equations, II. Existence of infinitely many solutions, Arch. Rational Mech. Anal., 82 (1983), 347-375.doi: 10.1007/BF00250556.

    [7]

    E. N. Dancer, K. L. Wang and Z. T. Zhang, Uniform Hölder estimate for singularly perturbed parabolic systems of Bose-Einstein condensates and competing species, J. Differential Equations, 251 (2011), 2737-2769.doi: 10.1016/j.jde.2011.06.015.

    [8]

    E. N. Dancer, K. L. Wang and Z. T. Zhang, The limit equation for the Gross-Pitaevskii equations and S. Terracini's conjecture, J. Funct. Anal., 262 (2012), 1087-1131.doi: 10.1016/j.jfa.2011.10.013.

    [9]

    E. N. Dancer, K. L. Wang and Z. T. Zhang, Addendum to "The limit equation for the Gross-Pitaevskii equations and S. Terracini's conjecture'' [J. Funct. Anal., 262 (2012), 1087-1131] [MR2863857], J. Funct. Anal., 264 (2013), 1125-1129.doi: 10.1016/j.jfa.2011.10.013.

    [10]

    E. N. Dancer and J. C. Wei, Spike solutions in coupled nonlinear chrödinger equations with attractive interaction, Trans. Amer. Math. Soc., 361 (2009), 1189-1208.doi: 10.1090/S0002-9947-08-04735-1.

    [11]

    E. N. Dancer, J. C. Wei and W. Tobias, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953-969.doi: 10.1016/j.anihpc.2010.01.009.

    [12]

    E. N. Dancer and T. Weth, Liouville-type results for non-cooperative elliptic systems in a half-space, J. Lond. Math. Soc., 86 (2012), 111-128.doi: 10.1112/jlms/jdr080.

    [13]

    D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations Of Second Order, Reprint of the 1998 ed., Springer-Verlag, Berlin, 2001.

    [14]

    M. K. Kwong, Uniqueness of positive radial solutions for $\Delta u- u + u^p= 0$ in $\mathbbR^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266.doi: 10.1007/BF00251502.

    [15]

    Y. Sato and Z. Q. Wang, On the multiple existence of semi-positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. PoincaréAnal. Non Linéaire, 30 (2013), 1-22.doi: 10.1016/j.anihpc.2012.05.002.

    [16]

    H. Tavares and S. Terracini, Sign-changing solutions of competition-diffusion elliptic systems and optimal partition problems, Ann. Inst. H. PoincaréAnal. Non Linéaire, 29 (2012), 279-300.doi: 10.1016/j.anihpc.2011.10.006.

    [17]

    S. Terracini and G. Verzini, Multipulse Phases in k-Mixtures of Bose-Einstein Condensates, Arch. Rational Mech. Anal., 194 (2009), 717-741.doi: 10.1007/s00205-008-0172-y.

    [18]

    J. C. Wei, On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differential Equations, 129 (1996), 315-333.doi: 10.1006/jdeq.1996.0120.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(109) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return