September  2016, 36(9): 4619-4635. doi: 10.3934/dcds.2016001

Minimality of the horocycle flow on laminations by hyperbolic surfaces with non-trivial topology

1. 

GeoDynApp - ECSING Group, Spain

2. 

Institut de Recherche Mathématiques de Rennes, Université de Rennes 1, F-35042 Rennes, France

3. 

Instituto de Matemática y Estadística Rafael Laguardia, Facultad de Ingeniería, Universidad de la República, J. Herrera y Reissig 565, C.P. 11300 Montevideo

4. 

Universidad Nacional Autónoma de México, Apartado Postal 273, Admon. de correos #3, C.P. 62251 Cuernavaca, Morelos

Received  June 2015 Revised  March 2016 Published  May 2016

We consider a minimal compact lamination by hyperbolic surfaces. We prove that if no leaf is simply connected, then the horocycle flow on its unitary tangent bundle is minimal.
Citation: Fernando Alcalde Cuesta, Françoise Dal'Bo, Matilde Martínez, Alberto Verjovsky. Minimality of the horocycle flow on laminations by hyperbolic surfaces with non-trivial topology. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4619-4635. doi: 10.3934/dcds.2016001
References:
[1]

F. Alcalde Cuesta and F. Dal'Bo, Remarks on the dynamics of the horocycle flow for homogeneous foliations by hyperbolic surfaces,, Expo. Math., 33 (2015), 431.  doi: 10.1016/j.exmath.2015.07.006.  Google Scholar

[2]

S. Alvarez and P. Lessa, The Teichmüller space of the Hirsch foliation,, preprint, ().   Google Scholar

[3]

Ch. Bonatti, X. Gómez-Mont and R. Vila-Freyer, Statistical behaviour of the leaves of Riccati foliations,, Ergodic Theory Dynam. Systems, 30 (2010), 67.  doi: 10.1017/S0143385708001028.  Google Scholar

[4]

A. Candel, Uniformization of surface laminations,, Ann. Sci. École Norm. Sup., 26 (1993), 489.   Google Scholar

[5]

A. Candel and L. Conlon, Foliations. I,, Graduate Studies in Mathematics, (2000).   Google Scholar

[6]

J. Cheeger, M. Gromov and M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds,, J. Differential Geom., 17 (1982), 15.   Google Scholar

[7]

F. Dal'bo, Topologie du feuilletage fortement stable,, Ann. Inst. Fourier (Grenoble), 50 (2000), 981.  doi: 10.5802/aif.1781.  Google Scholar

[8]

F. Dal'Bo, Geodesic and Horocyclic Trajectories,, Universitext. Translated from the 2007 French original, (2007).  doi: 10.1007/978-0-85729-073-1.  Google Scholar

[9]

D. B. A. Epstein, K. C. Millett and D. Tischler, Leaves without holonomy,, J. London Math. Soc. (2), 16 (1977), 548.   Google Scholar

[10]

G. Hector, Feuilletages en cylindres,, in Geometry and topology (Proc. III Latin Amer. School of Math., (1977), 252.   Google Scholar

[11]

G. Hector, S. Matsumoto and G. Meigniez, Ends of leaves of Lie foliations,, J. Math. Soc. Japan, 57 (2005), 753.  doi: 10.2969/jmsj/1158241934.  Google Scholar

[12]

G. A. Hedlund, Fuchsian groups and transitive horocycles,, Duke Math. J., 2 (1936), 530.  doi: 10.1215/S0012-7094-36-00246-6.  Google Scholar

[13]

M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds,, Lecture Notes in Mathematics, (1977).   Google Scholar

[14]

S. Hurder, Ergodic theory of foliations and a theorem of Sacksteder,, in Dynamical systems (College Park, 1342 (1988), 1986.  doi: 10.1007/BFb0082838.  Google Scholar

[15]

V. A. Kaimanovich, Ergodic properties of the horocycle flow and classification of Fuchsian groups,, J. Dynam. Control Systems, 6 (2000), 21.  doi: 10.1023/A:1009517621605.  Google Scholar

[16]

M. Kulikov, The horocycle flow without minimal sets,, C. R. Math. Acad. Sci. Paris, 338 (2004), 477.  doi: 10.1016/j.crma.2003.12.027.  Google Scholar

[17]

M. Martínez, S. Matsumoto and A. Verjovsky, Horocycle flows for laminations by hyperbolic Riemann surfaces and Hedlund's theorem,, to appear in Journal of Modern Dynamics, 10 (2016).   Google Scholar

[18]

S. Matsumoto, Dynamical systems without minimal sets,, preprint, ().   Google Scholar

[19]

S. Matsumoto, Horocycle flows without minimal sets,, preprint, ().   Google Scholar

[20]

T. Roblin, Ergodicitéet équidistribution en courbure négative,, Mém. Soc. Math. Fr. (N.S.), 95 (2003).   Google Scholar

[21]

A. Sambusetti, Asymptotic properties of coverings in negative curvature,, Geom. Topol., 12 (2008), 617.  doi: 10.2140/gt.2008.12.617.  Google Scholar

[22]

O. Sarig, The horocyclic flow and the Laplacian on hyperbolic surfaces of infinite genus,, Geom. Funct. Anal., 19 (2010), 1757.  doi: 10.1007/s00039-010-0048-9.  Google Scholar

[23]

A. N. Starkov, Fuchsian groups from the dynamical viewpoint,, J. Dynam. Control Systems, 1 (1995), 427.  doi: 10.1007/BF02269378.  Google Scholar

[24]

A. Verjovsky, A uniformization theorem for holomorphic foliations,, in The Lefschetz centennial conference, (1984), 233.   Google Scholar

show all references

References:
[1]

F. Alcalde Cuesta and F. Dal'Bo, Remarks on the dynamics of the horocycle flow for homogeneous foliations by hyperbolic surfaces,, Expo. Math., 33 (2015), 431.  doi: 10.1016/j.exmath.2015.07.006.  Google Scholar

[2]

S. Alvarez and P. Lessa, The Teichmüller space of the Hirsch foliation,, preprint, ().   Google Scholar

[3]

Ch. Bonatti, X. Gómez-Mont and R. Vila-Freyer, Statistical behaviour of the leaves of Riccati foliations,, Ergodic Theory Dynam. Systems, 30 (2010), 67.  doi: 10.1017/S0143385708001028.  Google Scholar

[4]

A. Candel, Uniformization of surface laminations,, Ann. Sci. École Norm. Sup., 26 (1993), 489.   Google Scholar

[5]

A. Candel and L. Conlon, Foliations. I,, Graduate Studies in Mathematics, (2000).   Google Scholar

[6]

J. Cheeger, M. Gromov and M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds,, J. Differential Geom., 17 (1982), 15.   Google Scholar

[7]

F. Dal'bo, Topologie du feuilletage fortement stable,, Ann. Inst. Fourier (Grenoble), 50 (2000), 981.  doi: 10.5802/aif.1781.  Google Scholar

[8]

F. Dal'Bo, Geodesic and Horocyclic Trajectories,, Universitext. Translated from the 2007 French original, (2007).  doi: 10.1007/978-0-85729-073-1.  Google Scholar

[9]

D. B. A. Epstein, K. C. Millett and D. Tischler, Leaves without holonomy,, J. London Math. Soc. (2), 16 (1977), 548.   Google Scholar

[10]

G. Hector, Feuilletages en cylindres,, in Geometry and topology (Proc. III Latin Amer. School of Math., (1977), 252.   Google Scholar

[11]

G. Hector, S. Matsumoto and G. Meigniez, Ends of leaves of Lie foliations,, J. Math. Soc. Japan, 57 (2005), 753.  doi: 10.2969/jmsj/1158241934.  Google Scholar

[12]

G. A. Hedlund, Fuchsian groups and transitive horocycles,, Duke Math. J., 2 (1936), 530.  doi: 10.1215/S0012-7094-36-00246-6.  Google Scholar

[13]

M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds,, Lecture Notes in Mathematics, (1977).   Google Scholar

[14]

S. Hurder, Ergodic theory of foliations and a theorem of Sacksteder,, in Dynamical systems (College Park, 1342 (1988), 1986.  doi: 10.1007/BFb0082838.  Google Scholar

[15]

V. A. Kaimanovich, Ergodic properties of the horocycle flow and classification of Fuchsian groups,, J. Dynam. Control Systems, 6 (2000), 21.  doi: 10.1023/A:1009517621605.  Google Scholar

[16]

M. Kulikov, The horocycle flow without minimal sets,, C. R. Math. Acad. Sci. Paris, 338 (2004), 477.  doi: 10.1016/j.crma.2003.12.027.  Google Scholar

[17]

M. Martínez, S. Matsumoto and A. Verjovsky, Horocycle flows for laminations by hyperbolic Riemann surfaces and Hedlund's theorem,, to appear in Journal of Modern Dynamics, 10 (2016).   Google Scholar

[18]

S. Matsumoto, Dynamical systems without minimal sets,, preprint, ().   Google Scholar

[19]

S. Matsumoto, Horocycle flows without minimal sets,, preprint, ().   Google Scholar

[20]

T. Roblin, Ergodicitéet équidistribution en courbure négative,, Mém. Soc. Math. Fr. (N.S.), 95 (2003).   Google Scholar

[21]

A. Sambusetti, Asymptotic properties of coverings in negative curvature,, Geom. Topol., 12 (2008), 617.  doi: 10.2140/gt.2008.12.617.  Google Scholar

[22]

O. Sarig, The horocyclic flow and the Laplacian on hyperbolic surfaces of infinite genus,, Geom. Funct. Anal., 19 (2010), 1757.  doi: 10.1007/s00039-010-0048-9.  Google Scholar

[23]

A. N. Starkov, Fuchsian groups from the dynamical viewpoint,, J. Dynam. Control Systems, 1 (1995), 427.  doi: 10.1007/BF02269378.  Google Scholar

[24]

A. Verjovsky, A uniformization theorem for holomorphic foliations,, in The Lefschetz centennial conference, (1984), 233.   Google Scholar

[1]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[2]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[3]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[4]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[5]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[6]

Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

[7]

Michael Schmidt, Emmanuel Trélat. Controllability of couette flows. Communications on Pure & Applied Analysis, 2006, 5 (1) : 201-211. doi: 10.3934/cpaa.2006.5.201

[8]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[9]

Seung-Yeal Ha, Myeongju Kang, Bora Moon. Collective behaviors of a Winfree ensemble on an infinite cylinder. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2749-2779. doi: 10.3934/dcdsb.2020204

[10]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[11]

Charles Amorim, Miguel Loayza, Marko A. Rojas-Medar. The nonstationary flows of micropolar fluids with thermal convection: An iterative approach. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2509-2535. doi: 10.3934/dcdsb.2020193

[12]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

[13]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[14]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[15]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (114)
  • HTML views (0)
  • Cited by (4)

[Back to Top]