September  2016, 36(9): 4637-4664. doi: 10.3934/dcds.2016002

Parameterization of slow-stable manifolds and their invariant vector bundles: Theory and numerical implementation

1. 

VU University Amsterdam, Department of Mathematics, de Boelelaan 1081, 1081 HV Amsterdam, Netherlands

2. 

Florida Atlantic University, Department of Mathematical Sciences, 777 Glades Road, Boca Raton, FL 33431, United States

Received  May 2015 Revised  February 2016 Published  May 2016

The present work deals with numerical methods for computing slow stable invariant manifolds as well as their invariant stable and unstable normal bundles. The slow manifolds studied here are sub-manifolds of the stable manifold of a hyperbolic equilibrium point. Our approach is based on studying certain partial differential equations equations whose solutions parameterize the invariant manifolds/bundles. Formal solutions of the partial differential equations are obtained via power series arguments, and truncating the formal series provides an explicit polynomial representation for the desired chart maps. The coefficients of the formal series are given by recursion relations which are amenable to computer calculations. The parameterizations conjugate the dynamics on the invariant manifolds and bundles to a prescribed linear dynamical systems. Hence in addition to providing accurate representation of the invariant manifolds and bundles our methods describe the dynamics on these objects as well. Example computations are given for vector fields which arise as Galerkin projections of a partial differential equation. As an application we illustrate the use of the parameterized slow manifolds and their linear bundles in the computation of heteroclinic orbits.
Citation: J. B. van den Berg, J. D. Mireles James. Parameterization of slow-stable manifolds and their invariant vector bundles: Theory and numerical implementation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4637-4664. doi: 10.3934/dcds.2016002
References:
[1]

W.-J. Beyn, The numerical computation of connecting orbits in dynamical systems,, IMA J. Numer. Anal., 10 (1990), 379.  doi: 10.1093/imanum/10.3.379.  Google Scholar

[2]

M. Breden, J.-P. Lessard and J. D. Mireles James, Computation of maximal local (un)stable manifold patches by the parameterization method,, Indagationes Mathematicae, 27 (2016), 340.  doi: 10.1016/j.indag.2015.11.001.  Google Scholar

[3]

H. W. Broer, H. M. Osinga and G. Vegter, On the computation of normally hyperbolic invariant manifolds,, In Nonlinear dynamical systems and chaos (Groningen, (1995), 423.   Google Scholar

[4]

H. W. Broer, H. M. Osinga and G. Vegter, Algorithms for computing normally hyperbolic invariant manifolds,, Z. Angew. Math. Phys., 48 (1997), 480.  doi: 10.1007/s000330050044.  Google Scholar

[5]

X. Cabré, E. Fontich and R. de la Llave, The parameterization method for invariant manifolds. I. Manifolds associated to non-resonant subspaces,, Indiana Univ. Math. J., 52 (2003), 283.  doi: 10.1512/iumj.2003.52.2245.  Google Scholar

[6]

X. Cabré, E. Fontich and R. de la Llave, The parameterization method for invariant manifolds. {II}. Regularity with respect to parameters,, Indiana Univ. Math. J., 52 (2003), 329.  doi: 10.1512/iumj.2003.52.2407.  Google Scholar

[7]

X. Cabré, E. Fontich and R. de la Llave, The parameterization method for invariant manifolds. III. Overview and applications,, J. Differential Equations, 218 (2005), 444.  doi: 10.1016/j.jde.2004.12.003.  Google Scholar

[8]

R. C. Calleja and J.-L. Figueras, Collision of invariant bundles of quasi-periodic attractors in the dissipative standard map,, Chaos, 22 (2012).  doi: 10.1063/1.4737205.  Google Scholar

[9]

M. J. Capiński, Covering relations and the existence of topologically normally hyperbolic invariant sets,, Discrete Contin. Dyn. Syst., 23 (2009), 705.  doi: 10.3934/dcds.2009.23.705.  Google Scholar

[10]

R. Castelli and J.-P. Lessard, Rigorous Numerics in Floquet Theory: Computing Stable and Unstable Bundles of Periodic Orbits,, SIAM J. Appl. Dyn. Syst., 12 (2013), 204.  doi: 10.1137/120873960.  Google Scholar

[11]

R. Castelli, J.-P. Lessard and J. D. Mireles James, Parameterization of invariant manifolds for periodic orbits i: Efficient numerics via the floquet normal form,, SIAM Journal on Applied Dynamical Systems, 14 (2015), 132.  doi: 10.1137/140960207.  Google Scholar

[12]

A. R. Champneys, Yu. A. Kuznetsov and B. Sandstede, A numerical toolbox for homoclinic bifurcation analysis,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6 (1996), 867.  doi: 10.1142/S0218127496000485.  Google Scholar

[13]

R. de la Llave, Invariant manifolds associated to nonresonant spectral subspaces,, J. Statist. Phys., 87 (1997), 211.  doi: 10.1007/BF02181486.  Google Scholar

[14]

R. de la Llave and C. Eugene Wayne, On Irwin's proof of the pseudostable manifold theorem,, Math. Z., 219 (1995), 301.  doi: 10.1007/BF02572367.  Google Scholar

[15]

M. Desroches, J. Guckenheimer, B. Krauskopf, C. Kuehn, H. M. Osinga and M. Wechselberger, Mixed-mode oscillations with multiple time scales,, SIAM Rev., 54 (2012), 211.  doi: 10.1137/100791233.  Google Scholar

[16]

E. J. Doedel and M. J. Friedman, Numerical computation of heteroclinic orbits,, J. Comput. Appl. Math., 26 (1989), 155.  doi: 10.1016/0377-0427(89)90153-2.  Google Scholar

[17]

N. Fenichel, Persistence and smoothness of invariant manifolds for flows,, Indiana Univ. Math. J., 21 (): 193.  doi: 10.1512/iumj.1972.21.21017.  Google Scholar

[18]

J.-L. Figueras and À. Haro, Triple collisions of invariant bundles,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2069.  doi: 10.3934/dcdsb.2013.18.2069.  Google Scholar

[19]

M. J. Friedman and E. J. Doedel, Computational methods for global analysis of homoclinic and heteroclinic orbits: A case study,, J. Dynam. Differential Equations, 5 (1993), 37.  doi: 10.1007/BF01063734.  Google Scholar

[20]

R. H. Goodman and J. K. Wróbel, High-order bisection method for computing invariant manifolds of two-dimensional maps,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 21 (2011), 2017.  doi: 10.1142/S0218127411029604.  Google Scholar

[21]

J. Guckenheimer and C. Kuehn, Computing slow manifolds of saddle type,, SIAM J. Appl. Dyn. Syst., 8 (2009), 854.  doi: 10.1137/080741999.  Google Scholar

[22]

A. Haro, Automatic differentiation methods in computational dynamical systems: Invariant manifolds and normal forms of vector fields at fixed points,, Manuscript., ().   Google Scholar

[23]

M. W. Hirsch and C. C. Pugh, Stable manifolds for hyperbolic sets,, Bull. Amer. Math. Soc., 75 (1969), 149.  doi: 10.1090/S0002-9904-1969-12184-1.  Google Scholar

[24]

À. Jorba and M. Zou, A software package for the numerical integration of {ODE}s by means of high-order Taylor methods,, Experiment. Math., 14 (2005), 99.  doi: 10.1080/10586458.2005.10128904.  Google Scholar

[25]

D. E. Knuth, The Art of Computer Programming. Vol. 2,, Addison-Wesley Publishing Co., (1981).   Google Scholar

[26]

J.-P. Lessard, J. D. Mireles James and C. Reinhardt, Computer assisted proof of transverse saddle-to-saddle connecting orbits for first order vector fields,, J. Dynam. Differential Equations, 26 (2014), 267.  doi: 10.1007/s10884-014-9367-0.  Google Scholar

[27]

E. N. Lorenz, The slow manifold-what is it?,, J. Atmospheric Sci., 49 (1992), 2449.  doi: 10.1175/1520-0469(1992)049<2449:TSMII>2.0.CO;2.  Google Scholar

[28]

J. D. Mireles James, Quadratic volume-preserving maps: (Un)stable manifolds, hyperbolic dynamics, and vortex-bubble bifurcations,, J. Nonlinear Sci., 23 (2013), 585.  doi: 10.1007/s00332-012-9162-1.  Google Scholar

[29]

J. D. Mireles James and H. Lomelí, Computation of heteroclinic arcs with application to the volume preserving Hénon family,, SIAM J. Appl. Dyn. Syst., 9 (2010), 919.  doi: 10.1137/090776329.  Google Scholar

[30]

J. D. Mireles James and K. Mischaikow, Rigorous a posteriori computation of (un)stable manifolds and connecting orbits for analytic maps,, SIAM J. Appl. Dyn. Syst., 12 (2013), 957.  doi: 10.1137/12088224X.  Google Scholar

[31]

J. D. Mireles James and J. B. Van den Berg, Matlab codes for "parameterization of slow-stable manifold and their invariant vector bundles: Theory and numerical implementation'',, , ().   Google Scholar

[32]

C. Pötzsche and M. Rasmussen, Local approximation of invariant fiber bundles: an algorithmic approach,, In Difference equations and discrete dynamical systems, (2005), 155.  doi: 10.1142/9789812701572_0011.  Google Scholar

[33]

W. Tucker, Validated Numerics,, Princeton University Press, (2011).   Google Scholar

[34]

J. B. Van den Berg, J. D. Mireles James and C. Reinhardt, Computing (un)stable manifolds with validated error bounds: Non-resonant and resonant spectra,, To appear in Journal of Nonlinear Science, (2016).   Google Scholar

[35]

J. B. Van den Berg, J. D. Mireles-James, J.-P. Lessard and K. Mischaikow, Rigorous numerics for symmetric connecting orbits: Even homoclinics of the Gray-Scott equation,, SIAM J. Math. Anal., 43 (2011), 1557.  doi: 10.1137/100812008.  Google Scholar

[36]

J. K. Wróbel and R. H. Goodman, High-order adaptive method for computing two-dimensional invariant manifolds of three-dimensional maps,, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 1734.  doi: 10.1016/j.cnsns.2012.10.017.  Google Scholar

show all references

References:
[1]

W.-J. Beyn, The numerical computation of connecting orbits in dynamical systems,, IMA J. Numer. Anal., 10 (1990), 379.  doi: 10.1093/imanum/10.3.379.  Google Scholar

[2]

M. Breden, J.-P. Lessard and J. D. Mireles James, Computation of maximal local (un)stable manifold patches by the parameterization method,, Indagationes Mathematicae, 27 (2016), 340.  doi: 10.1016/j.indag.2015.11.001.  Google Scholar

[3]

H. W. Broer, H. M. Osinga and G. Vegter, On the computation of normally hyperbolic invariant manifolds,, In Nonlinear dynamical systems and chaos (Groningen, (1995), 423.   Google Scholar

[4]

H. W. Broer, H. M. Osinga and G. Vegter, Algorithms for computing normally hyperbolic invariant manifolds,, Z. Angew. Math. Phys., 48 (1997), 480.  doi: 10.1007/s000330050044.  Google Scholar

[5]

X. Cabré, E. Fontich and R. de la Llave, The parameterization method for invariant manifolds. I. Manifolds associated to non-resonant subspaces,, Indiana Univ. Math. J., 52 (2003), 283.  doi: 10.1512/iumj.2003.52.2245.  Google Scholar

[6]

X. Cabré, E. Fontich and R. de la Llave, The parameterization method for invariant manifolds. {II}. Regularity with respect to parameters,, Indiana Univ. Math. J., 52 (2003), 329.  doi: 10.1512/iumj.2003.52.2407.  Google Scholar

[7]

X. Cabré, E. Fontich and R. de la Llave, The parameterization method for invariant manifolds. III. Overview and applications,, J. Differential Equations, 218 (2005), 444.  doi: 10.1016/j.jde.2004.12.003.  Google Scholar

[8]

R. C. Calleja and J.-L. Figueras, Collision of invariant bundles of quasi-periodic attractors in the dissipative standard map,, Chaos, 22 (2012).  doi: 10.1063/1.4737205.  Google Scholar

[9]

M. J. Capiński, Covering relations and the existence of topologically normally hyperbolic invariant sets,, Discrete Contin. Dyn. Syst., 23 (2009), 705.  doi: 10.3934/dcds.2009.23.705.  Google Scholar

[10]

R. Castelli and J.-P. Lessard, Rigorous Numerics in Floquet Theory: Computing Stable and Unstable Bundles of Periodic Orbits,, SIAM J. Appl. Dyn. Syst., 12 (2013), 204.  doi: 10.1137/120873960.  Google Scholar

[11]

R. Castelli, J.-P. Lessard and J. D. Mireles James, Parameterization of invariant manifolds for periodic orbits i: Efficient numerics via the floquet normal form,, SIAM Journal on Applied Dynamical Systems, 14 (2015), 132.  doi: 10.1137/140960207.  Google Scholar

[12]

A. R. Champneys, Yu. A. Kuznetsov and B. Sandstede, A numerical toolbox for homoclinic bifurcation analysis,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6 (1996), 867.  doi: 10.1142/S0218127496000485.  Google Scholar

[13]

R. de la Llave, Invariant manifolds associated to nonresonant spectral subspaces,, J. Statist. Phys., 87 (1997), 211.  doi: 10.1007/BF02181486.  Google Scholar

[14]

R. de la Llave and C. Eugene Wayne, On Irwin's proof of the pseudostable manifold theorem,, Math. Z., 219 (1995), 301.  doi: 10.1007/BF02572367.  Google Scholar

[15]

M. Desroches, J. Guckenheimer, B. Krauskopf, C. Kuehn, H. M. Osinga and M. Wechselberger, Mixed-mode oscillations with multiple time scales,, SIAM Rev., 54 (2012), 211.  doi: 10.1137/100791233.  Google Scholar

[16]

E. J. Doedel and M. J. Friedman, Numerical computation of heteroclinic orbits,, J. Comput. Appl. Math., 26 (1989), 155.  doi: 10.1016/0377-0427(89)90153-2.  Google Scholar

[17]

N. Fenichel, Persistence and smoothness of invariant manifolds for flows,, Indiana Univ. Math. J., 21 (): 193.  doi: 10.1512/iumj.1972.21.21017.  Google Scholar

[18]

J.-L. Figueras and À. Haro, Triple collisions of invariant bundles,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2069.  doi: 10.3934/dcdsb.2013.18.2069.  Google Scholar

[19]

M. J. Friedman and E. J. Doedel, Computational methods for global analysis of homoclinic and heteroclinic orbits: A case study,, J. Dynam. Differential Equations, 5 (1993), 37.  doi: 10.1007/BF01063734.  Google Scholar

[20]

R. H. Goodman and J. K. Wróbel, High-order bisection method for computing invariant manifolds of two-dimensional maps,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 21 (2011), 2017.  doi: 10.1142/S0218127411029604.  Google Scholar

[21]

J. Guckenheimer and C. Kuehn, Computing slow manifolds of saddle type,, SIAM J. Appl. Dyn. Syst., 8 (2009), 854.  doi: 10.1137/080741999.  Google Scholar

[22]

A. Haro, Automatic differentiation methods in computational dynamical systems: Invariant manifolds and normal forms of vector fields at fixed points,, Manuscript., ().   Google Scholar

[23]

M. W. Hirsch and C. C. Pugh, Stable manifolds for hyperbolic sets,, Bull. Amer. Math. Soc., 75 (1969), 149.  doi: 10.1090/S0002-9904-1969-12184-1.  Google Scholar

[24]

À. Jorba and M. Zou, A software package for the numerical integration of {ODE}s by means of high-order Taylor methods,, Experiment. Math., 14 (2005), 99.  doi: 10.1080/10586458.2005.10128904.  Google Scholar

[25]

D. E. Knuth, The Art of Computer Programming. Vol. 2,, Addison-Wesley Publishing Co., (1981).   Google Scholar

[26]

J.-P. Lessard, J. D. Mireles James and C. Reinhardt, Computer assisted proof of transverse saddle-to-saddle connecting orbits for first order vector fields,, J. Dynam. Differential Equations, 26 (2014), 267.  doi: 10.1007/s10884-014-9367-0.  Google Scholar

[27]

E. N. Lorenz, The slow manifold-what is it?,, J. Atmospheric Sci., 49 (1992), 2449.  doi: 10.1175/1520-0469(1992)049<2449:TSMII>2.0.CO;2.  Google Scholar

[28]

J. D. Mireles James, Quadratic volume-preserving maps: (Un)stable manifolds, hyperbolic dynamics, and vortex-bubble bifurcations,, J. Nonlinear Sci., 23 (2013), 585.  doi: 10.1007/s00332-012-9162-1.  Google Scholar

[29]

J. D. Mireles James and H. Lomelí, Computation of heteroclinic arcs with application to the volume preserving Hénon family,, SIAM J. Appl. Dyn. Syst., 9 (2010), 919.  doi: 10.1137/090776329.  Google Scholar

[30]

J. D. Mireles James and K. Mischaikow, Rigorous a posteriori computation of (un)stable manifolds and connecting orbits for analytic maps,, SIAM J. Appl. Dyn. Syst., 12 (2013), 957.  doi: 10.1137/12088224X.  Google Scholar

[31]

J. D. Mireles James and J. B. Van den Berg, Matlab codes for "parameterization of slow-stable manifold and their invariant vector bundles: Theory and numerical implementation'',, , ().   Google Scholar

[32]

C. Pötzsche and M. Rasmussen, Local approximation of invariant fiber bundles: an algorithmic approach,, In Difference equations and discrete dynamical systems, (2005), 155.  doi: 10.1142/9789812701572_0011.  Google Scholar

[33]

W. Tucker, Validated Numerics,, Princeton University Press, (2011).   Google Scholar

[34]

J. B. Van den Berg, J. D. Mireles James and C. Reinhardt, Computing (un)stable manifolds with validated error bounds: Non-resonant and resonant spectra,, To appear in Journal of Nonlinear Science, (2016).   Google Scholar

[35]

J. B. Van den Berg, J. D. Mireles-James, J.-P. Lessard and K. Mischaikow, Rigorous numerics for symmetric connecting orbits: Even homoclinics of the Gray-Scott equation,, SIAM J. Math. Anal., 43 (2011), 1557.  doi: 10.1137/100812008.  Google Scholar

[36]

J. K. Wróbel and R. H. Goodman, High-order adaptive method for computing two-dimensional invariant manifolds of three-dimensional maps,, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 1734.  doi: 10.1016/j.cnsns.2012.10.017.  Google Scholar

[1]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[2]

Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341

[3]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[4]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453

[5]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[6]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[7]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[8]

M. Phani Sudheer, Ravi S. Nanjundiah, A. S. Vasudeva Murthy. Revisiting the slow manifold of the Lorenz-Krishnamurthy quintet. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1403-1416. doi: 10.3934/dcdsb.2006.6.1403

[9]

Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565

[10]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[11]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[12]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[13]

Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021018

[14]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[15]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[16]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[17]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1673-1692. doi: 10.3934/dcdss.2020449

[18]

Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021

[19]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021031

[20]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]