• Previous Article
    Classification of supersolutions and Liouville theorems for some nonlinear elliptic problems
  • DCDS Home
  • This Issue
  • Next Article
    Parameterization of slow-stable manifolds and their invariant vector bundles: Theory and numerical implementation
September  2016, 36(9): 4665-4702. doi: 10.3934/dcds.2016003

Laminations from the main cubioid

1. 

Department of Mathematics, University of Alabama at Birmingham, Birmingham, AL 35294-1170

2. 

Faculty of Mathematics, Laboratory of Algebraic Geometry and its Applications, National Research University Higher School of Economics, Vavilova St. 7, 112312 Moscow, Russian Federation, Russian Federation

Received  May 2013 Revised  January 2016 Published  May 2016

Polynomials from the closure of the principal hyperbolic domain of the cubic connectedness locus have some specific properties, which were studied in a recent paper by the authors. The family of (affine conjugacy classes of) all polynomials with these properties is called the Main Cubioid. In this paper, we describe a combinatorial counterpart of the Main Cubioid --- the set of invariant laminations that can be associated to polynomials from the Main Cubioid.
Citation: Alexander Blokh, Lex Oversteegen, Ross Ptacek, Vladlen Timorin. Laminations from the main cubioid. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4665-4702. doi: 10.3934/dcds.2016003
References:
[1]

L. Alseda, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One,, World Scientific (Advanced Series in Nonlinear Dynamics, (2000).  doi: 10.1142/4205.  Google Scholar

[2]

A. Blokh, C. Curry and L. Oversteegen, Locally connected models for Julia sets,, Advances in Mathematics, 226 (2011), 1621.  doi: 10.1016/j.aim.2010.08.011.  Google Scholar

[3]

A. Blokh, R. Fokkink, J. Mayer, L. Oversteegen and E. Tymchatyn, Fixed point theorems in plane continua with applications,, Memoirs of the American Mathematical Society, 224 (2013).  doi: 10.1090/S0065-9266-2012-00671-X.  Google Scholar

[4]

A. Blokh and G. Levin, Growing trees, laminations and the dynamics on the Julia set,, Ergod. Th. and Dynam. Sys., 22 (2002), 63.  doi: 10.1017/S0143385702000032.  Google Scholar

[5]

A. Blokh, J. Malaugh, J. Mayer, L. Oversteegen and D. Parris, Rotational subsets of the circle under $z^n$,, Topology and its Appl., 153 (2006), 1540.  doi: 10.1016/j.topol.2005.04.010.  Google Scholar

[6]

A. Blokh, D. Mimbs, L. Oversteegen and K. Valkenburg, Laminations in the language of leaves,, Trans. of the Amer. Math. Soc., 365 (2013), 5367.  doi: 10.1090/S0002-9947-2013-05809-6.  Google Scholar

[7]

A. Blokh and L. Oversteegen, {Monotone images of Cremer Julia sets,, Houston Journal of Mathematics, 36 (2010), 469.   Google Scholar

[8]

A. Blokh, L. Oversteegen, R. Ptacek and V. Timorin, Dynamical cores of topological polynomials,, Frontiers in complex dynamics, 51 (2014), 27.  doi: 10.1515/9781400851317-005.  Google Scholar

[9]

A. Blokh, L. Oversteegen, R. Ptacek and V. Timorin, The main cubioid,, Nonlinearity, 27 (2014), 1879.  doi: 10.1088/0951-7715/27/8/1879.  Google Scholar

[10]

X. Buff and C. Henriksen, Julia Sets in Parameter Spaces,, Commun. Math. Phys., 220 (2001), 333.  doi: 10.1007/PL00005568.  Google Scholar

[11]

C. Carathéodory, Über die Begrenzung einfach zusammenhängender Gebiete (German),, Math. Ann., 73 (1913), 323.  doi: 10.1007/BF01456699.  Google Scholar

[12]

L. Carleson and T. W. Gamelin, Complex Dynamics,, Springer, (1993).  doi: 10.1007/978-1-4612-4364-9.  Google Scholar

[13]

A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes I,, Publications Mathématiques d'Orsay, (1984).   Google Scholar

[14]

A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes II,, Publications Mathématiques d'Orsay, 85-04 (1985), 85.   Google Scholar

[15]

A. Epstein and M. Yampolsky, Geography of the Cubic Connectedness Locus: Intertwining Surgery,, Ann. Sci. Éc. Norm. Sup., 32 (1999), 151.  doi: 10.1016/S0012-9593(99)80013-5.  Google Scholar

[16]

T. Gauthier, Higher bifurcation currents, neutral cycles, and the Mandelbrot set,, Indiana Univ. Math. J., 63 (2014), 917.  doi: 10.1512/iumj.2014.63.5328.  Google Scholar

[17]

L. Goldberg and J. Milnor, Fixed points of polynomial maps. II. Fixed point portraits,, Ann. Sci. École Norm. Sup. (4), 26 (1993), 51.   Google Scholar

[18]

J. Kiwi, Wandering orbit portraits,, Trans. of the Amer. Math. Soc., 354 (2002), 1473.  doi: 10.1090/S0002-9947-01-02896-3.  Google Scholar

[19]

J. Kiwi, $\mathbb R$eal laminations and the topological dynamics of complex polynomials,, Advances in Mathematics, 184 (2004), 207.  doi: 10.1016/S0001-8708(03)00144-0.  Google Scholar

[20]

C. McMullen, The Mandelbrot set is universal,, in: The Mandelbrot Set, 274 (2007), 1.   Google Scholar

[21]

J. Milnor, Geometry and dynamics of quadratic rational maps,, Experimental Math., 2 (1993), 37.  doi: 10.1080/10586458.1993.10504267.  Google Scholar

[22]

J. Milnor, Dynamics in One Complex Variable,, Annals of Mathematical Studies, 160 (2006).   Google Scholar

[23]

J. Milnor, Cubic polynomial maps with periodic critical orbit I,, in: Complex Dynamics, (2009), 333.  doi: 10.1201/b10617-13.  Google Scholar

[24]

J. Milnor and A. Poirier, Hyperbolic components in spaces of polynomial maps,, Contemp. Math., 573 (2012), 183.  doi: 10.1090/conm/573/11428.  Google Scholar

[25]

J. Milnor and W. Thurston, On iterated maps of the interval,, in Dynamical systems, 1342 (1988), 465.  doi: 10.1007/BFb0082847.  Google Scholar

[26]

M. Misiurewicz, Horseshoes for mappings of the interval,, Bull. Acad. Pol. Sci., 27 (1979), 167.   Google Scholar

[27]

M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings,, Studia Math., 67 (1980), 45.   Google Scholar

[28]

C. L. Petersen and T. Lei, Analytic coordinates recording cubic dynamics,, In: Complex Dynamics: Families and Friends, (2009), 413.  doi: 10.1201/b10617-14.  Google Scholar

[29]

C. L. Petersen, P. Roesch and T. Lei, Parabolic slices on the boundary of $\mathcal H$,, work in progress., ().   Google Scholar

[30]

P. Roesch, Hyperbolic components of polynomials with a fixed critical point of maximal order,, Ann. Sci. école Norm. Sup. (4), 40 (2007), 901.  doi: 10.1016/j.ansens.2007.10.001.  Google Scholar

[31]

W. Thurston, On the geometry and dynamics of iterated rational maps,, in: Complex dynamics: Families and Friends, (2009), 3.  doi: 10.1201/b10617-3.  Google Scholar

[32]

L.-S. Young, On the prevalence of horseshoes,, Trans. Amer. Math. Soc., 263 (1981), 75.  doi: 10.1090/S0002-9947-1981-0590412-0.  Google Scholar

[33]

S. Zakeri, Dynamics of cubic Siegel polynomials,, Comm. Math. Phys., 206 (1999), 185.  doi: 10.1007/s002200050702.  Google Scholar

show all references

References:
[1]

L. Alseda, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One,, World Scientific (Advanced Series in Nonlinear Dynamics, (2000).  doi: 10.1142/4205.  Google Scholar

[2]

A. Blokh, C. Curry and L. Oversteegen, Locally connected models for Julia sets,, Advances in Mathematics, 226 (2011), 1621.  doi: 10.1016/j.aim.2010.08.011.  Google Scholar

[3]

A. Blokh, R. Fokkink, J. Mayer, L. Oversteegen and E. Tymchatyn, Fixed point theorems in plane continua with applications,, Memoirs of the American Mathematical Society, 224 (2013).  doi: 10.1090/S0065-9266-2012-00671-X.  Google Scholar

[4]

A. Blokh and G. Levin, Growing trees, laminations and the dynamics on the Julia set,, Ergod. Th. and Dynam. Sys., 22 (2002), 63.  doi: 10.1017/S0143385702000032.  Google Scholar

[5]

A. Blokh, J. Malaugh, J. Mayer, L. Oversteegen and D. Parris, Rotational subsets of the circle under $z^n$,, Topology and its Appl., 153 (2006), 1540.  doi: 10.1016/j.topol.2005.04.010.  Google Scholar

[6]

A. Blokh, D. Mimbs, L. Oversteegen and K. Valkenburg, Laminations in the language of leaves,, Trans. of the Amer. Math. Soc., 365 (2013), 5367.  doi: 10.1090/S0002-9947-2013-05809-6.  Google Scholar

[7]

A. Blokh and L. Oversteegen, {Monotone images of Cremer Julia sets,, Houston Journal of Mathematics, 36 (2010), 469.   Google Scholar

[8]

A. Blokh, L. Oversteegen, R. Ptacek and V. Timorin, Dynamical cores of topological polynomials,, Frontiers in complex dynamics, 51 (2014), 27.  doi: 10.1515/9781400851317-005.  Google Scholar

[9]

A. Blokh, L. Oversteegen, R. Ptacek and V. Timorin, The main cubioid,, Nonlinearity, 27 (2014), 1879.  doi: 10.1088/0951-7715/27/8/1879.  Google Scholar

[10]

X. Buff and C. Henriksen, Julia Sets in Parameter Spaces,, Commun. Math. Phys., 220 (2001), 333.  doi: 10.1007/PL00005568.  Google Scholar

[11]

C. Carathéodory, Über die Begrenzung einfach zusammenhängender Gebiete (German),, Math. Ann., 73 (1913), 323.  doi: 10.1007/BF01456699.  Google Scholar

[12]

L. Carleson and T. W. Gamelin, Complex Dynamics,, Springer, (1993).  doi: 10.1007/978-1-4612-4364-9.  Google Scholar

[13]

A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes I,, Publications Mathématiques d'Orsay, (1984).   Google Scholar

[14]

A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes II,, Publications Mathématiques d'Orsay, 85-04 (1985), 85.   Google Scholar

[15]

A. Epstein and M. Yampolsky, Geography of the Cubic Connectedness Locus: Intertwining Surgery,, Ann. Sci. Éc. Norm. Sup., 32 (1999), 151.  doi: 10.1016/S0012-9593(99)80013-5.  Google Scholar

[16]

T. Gauthier, Higher bifurcation currents, neutral cycles, and the Mandelbrot set,, Indiana Univ. Math. J., 63 (2014), 917.  doi: 10.1512/iumj.2014.63.5328.  Google Scholar

[17]

L. Goldberg and J. Milnor, Fixed points of polynomial maps. II. Fixed point portraits,, Ann. Sci. École Norm. Sup. (4), 26 (1993), 51.   Google Scholar

[18]

J. Kiwi, Wandering orbit portraits,, Trans. of the Amer. Math. Soc., 354 (2002), 1473.  doi: 10.1090/S0002-9947-01-02896-3.  Google Scholar

[19]

J. Kiwi, $\mathbb R$eal laminations and the topological dynamics of complex polynomials,, Advances in Mathematics, 184 (2004), 207.  doi: 10.1016/S0001-8708(03)00144-0.  Google Scholar

[20]

C. McMullen, The Mandelbrot set is universal,, in: The Mandelbrot Set, 274 (2007), 1.   Google Scholar

[21]

J. Milnor, Geometry and dynamics of quadratic rational maps,, Experimental Math., 2 (1993), 37.  doi: 10.1080/10586458.1993.10504267.  Google Scholar

[22]

J. Milnor, Dynamics in One Complex Variable,, Annals of Mathematical Studies, 160 (2006).   Google Scholar

[23]

J. Milnor, Cubic polynomial maps with periodic critical orbit I,, in: Complex Dynamics, (2009), 333.  doi: 10.1201/b10617-13.  Google Scholar

[24]

J. Milnor and A. Poirier, Hyperbolic components in spaces of polynomial maps,, Contemp. Math., 573 (2012), 183.  doi: 10.1090/conm/573/11428.  Google Scholar

[25]

J. Milnor and W. Thurston, On iterated maps of the interval,, in Dynamical systems, 1342 (1988), 465.  doi: 10.1007/BFb0082847.  Google Scholar

[26]

M. Misiurewicz, Horseshoes for mappings of the interval,, Bull. Acad. Pol. Sci., 27 (1979), 167.   Google Scholar

[27]

M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings,, Studia Math., 67 (1980), 45.   Google Scholar

[28]

C. L. Petersen and T. Lei, Analytic coordinates recording cubic dynamics,, In: Complex Dynamics: Families and Friends, (2009), 413.  doi: 10.1201/b10617-14.  Google Scholar

[29]

C. L. Petersen, P. Roesch and T. Lei, Parabolic slices on the boundary of $\mathcal H$,, work in progress., ().   Google Scholar

[30]

P. Roesch, Hyperbolic components of polynomials with a fixed critical point of maximal order,, Ann. Sci. école Norm. Sup. (4), 40 (2007), 901.  doi: 10.1016/j.ansens.2007.10.001.  Google Scholar

[31]

W. Thurston, On the geometry and dynamics of iterated rational maps,, in: Complex dynamics: Families and Friends, (2009), 3.  doi: 10.1201/b10617-3.  Google Scholar

[32]

L.-S. Young, On the prevalence of horseshoes,, Trans. Amer. Math. Soc., 263 (1981), 75.  doi: 10.1090/S0002-9947-1981-0590412-0.  Google Scholar

[33]

S. Zakeri, Dynamics of cubic Siegel polynomials,, Comm. Math. Phys., 206 (1999), 185.  doi: 10.1007/s002200050702.  Google Scholar

[1]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[2]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[3]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[4]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[5]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[6]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[7]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[8]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[9]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[10]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[11]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[12]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[13]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

[14]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[15]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (1)

[Back to Top]