Citation: |
[1] |
L. M. Cabrer and D. Mundici, Classifying orbits of the affine group over the integers, Ergodic Theory Dynam. Systems, in press, (2015), 14pp.doi: 10.1017/etds.2015.45. |
[2] |
J. S. Dani, Density properties of orbits under discrete groups, J. Indian Math. Soc., 39 (1975), 189-217. |
[3] |
S. G. Dani and A. Nogueira, On $SL(n,\mathbbZ)_+$-orbits on $\mathbbR^n$ and positive integral solutions of linear inequalities, J. of Number Theory, 129 (2009), 2526-2529.doi: 10.1016/j.jnt.2008.12.010. |
[4] |
L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL, 1992. |
[5] |
G. Ewald, Combinatorial Convexity and Algebraic Geometry, Grad. Texts in Math., Vol. 168, Springer-Verlag, New York, 1996.doi: 10.1007/978-1-4612-4044-0. |
[6] |
H. Federer, Geometric Measure Theory, Springer, New York, 1969. |
[7] |
A. Guilloux, A brief remark on orbits of $\mathsf{SL}(2,\mathbbZ)$ in the Euclidean plane}, Ergodic Theory Dynam. Systems, 30 (2010), 1101-1109.doi: 10.1017/S0143385709000315. |
[8] |
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth edition, Clarendon Press, Oxford, 1979. |
[9] |
M. Laurent and A. Nogueira, Approximation to points in the plane by $\mathsf{SL}(2, \mathbbZ)$-orbits, J. London Math. Soc., 85 (2012), 409-429.doi: 10.1112/jlms/jdr061. |
[10] |
R. Morelli, The birational geometry of toric varieties, J. Algebraic Geom., 5 (1996), 751-782. |
[11] |
D. Mundici, The Haar theorem for lattice-ordered abelian groups with order-unit, Discrete Contin. Dyn. Syst., 21 (2008), 537-549.doi: 10.3934/dcds.2008.21.537. |
[12] |
D. Mundici, Invariant measure under the affine group over $\mathbbZ$, Combin. Probab. Comput., 23 (2014), 248-268.doi: 10.1017/S096354831300062X. |
[13] |
A. Nogueira, Orbit distribution on $\mathbbR^2$ under the natural action of $ SL(2,\mathbbZ)$, Indag. Math. (N.S.), 13 (2002), 103-124.doi: 10.1016/S0019-3577(02)90009-1. |
[14] |
A. Nogueira, Lattice orbit distribution on $\mathbbR^2$, Ergodic Theory Dynam. Systems, 30 (2010), 1201-1214. Erratum, ibid., p. 1215.doi: 10.1017/S0143385709000558. |
[15] |
T. Oda, Convex Bodies and Algebraic Geometry. An Introduction to the Theory of Toric Varieties, A Series of Modern Surveys in Mathematics, Vol. 3, Springer-Verlag, New York, 1988. |
[16] |
J. R. Stallings, Lectures on Polyhedral Topology, Tata Inst. Fund. Res., Lectures in Mathematics, Vol. 43, Mumbay, 1967. |
[17] |
E. Witten, $\mathsf{SL}(2, \mathbbZ)$ action on three-dimensional conformal field theories with abelian symmetry, In: From Fields to Strings: Circumnavigating Theoretical Physics, Ian Kogan Memorial Collection (in 3 volumes), M. Shifman et al., Eds., World Scientific, Singapore, 2 (2005), 1173-1200. |
[18] |
J. Włodarczyk, Decompositions of birational toric maps in blow-ups and blow-downs, Trans. Amer. Math. Soc., 349 (1997), 373-411.doi: 10.1090/S0002-9947-97-01701-7. |