\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Classifying GL$(n,\mathbb{Z})$-orbits of points and rational subspaces

Abstract Related Papers Cited by
  • We first show that the subgroup of the abelian real group $\mathbb{R}$ generated by the coordinates of a point in $x\in\mathbb{R}^n$ completely classifies the GL$(n,\mathbb{Z})$-orbit of $x$. This yields a short proof of J.S. Dani's theorem: the GL$(n,\mathbb{Z})$-orbit of $x\in\mathbb{R}^n$ is dense iff $x_i/x_j\in \mathbb{R}\setminus \mathbb{Q}$ for some $i,j=1,\dots,n$. We then classify GL$(n,\mathbb{Z})$-orbits of rational affine subspaces $F$ of $\mathbb{R}^n$. We prove that the dimension of $F$ together with the volume of a special parallelotope associated to $F$ yields a complete classifier of the GL$(n,\mathbb{Z})$-orbit of $F$.
    Mathematics Subject Classification: Primary: 37C85; Secondary: 11B57, 22F05, 37A45.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. M. Cabrer and D. Mundici, Classifying orbits of the affine group over the integers, Ergodic Theory Dynam. Systems, in press, (2015), 14pp.doi: 10.1017/etds.2015.45.

    [2]

    J. S. Dani, Density properties of orbits under discrete groups, J. Indian Math. Soc., 39 (1975), 189-217.

    [3]

    S. G. Dani and A. Nogueira, On $SL(n,\mathbbZ)_+$-orbits on $\mathbbR^n$ and positive integral solutions of linear inequalities, J. of Number Theory, 129 (2009), 2526-2529.doi: 10.1016/j.jnt.2008.12.010.

    [4]

    L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL, 1992.

    [5]

    G. Ewald, Combinatorial Convexity and Algebraic Geometry, Grad. Texts in Math., Vol. 168, Springer-Verlag, New York, 1996.doi: 10.1007/978-1-4612-4044-0.

    [6]

    H. Federer, Geometric Measure Theory, Springer, New York, 1969.

    [7]

    A. Guilloux, A brief remark on orbits of $\mathsf{SL}(2,\mathbbZ)$ in the Euclidean plane}, Ergodic Theory Dynam. Systems, 30 (2010), 1101-1109.doi: 10.1017/S0143385709000315.

    [8]

    G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth edition, Clarendon Press, Oxford, 1979.

    [9]

    M. Laurent and A. Nogueira, Approximation to points in the plane by $\mathsf{SL}(2, \mathbbZ)$-orbits, J. London Math. Soc., 85 (2012), 409-429.doi: 10.1112/jlms/jdr061.

    [10]

    R. Morelli, The birational geometry of toric varieties, J. Algebraic Geom., 5 (1996), 751-782.

    [11]

    D. Mundici, The Haar theorem for lattice-ordered abelian groups with order-unit, Discrete Contin. Dyn. Syst., 21 (2008), 537-549.doi: 10.3934/dcds.2008.21.537.

    [12]

    D. Mundici, Invariant measure under the affine group over $\mathbbZ$, Combin. Probab. Comput., 23 (2014), 248-268.doi: 10.1017/S096354831300062X.

    [13]

    A. Nogueira, Orbit distribution on $\mathbbR^2$ under the natural action of $ SL(2,\mathbbZ)$, Indag. Math. (N.S.), 13 (2002), 103-124.doi: 10.1016/S0019-3577(02)90009-1.

    [14]

    A. Nogueira, Lattice orbit distribution on $\mathbbR^2$, Ergodic Theory Dynam. Systems, 30 (2010), 1201-1214. Erratum, ibid., p. 1215.doi: 10.1017/S0143385709000558.

    [15]

    T. Oda, Convex Bodies and Algebraic Geometry. An Introduction to the Theory of Toric Varieties, A Series of Modern Surveys in Mathematics, Vol. 3, Springer-Verlag, New York, 1988.

    [16]

    J. R. Stallings, Lectures on Polyhedral Topology, Tata Inst. Fund. Res., Lectures in Mathematics, Vol. 43, Mumbay, 1967.

    [17]

    E. Witten, $\mathsf{SL}(2, \mathbbZ)$ action on three-dimensional conformal field theories with abelian symmetry, In: From Fields to Strings: Circumnavigating Theoretical Physics, Ian Kogan Memorial Collection (in 3 volumes), M. Shifman et al., Eds., World Scientific, Singapore, 2 (2005), 1173-1200.

    [18]

    J. Włodarczyk, Decompositions of birational toric maps in blow-ups and blow-downs, Trans. Amer. Math. Soc., 349 (1997), 373-411.doi: 10.1090/S0002-9947-97-01701-7.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(213) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return