• Previous Article
    On the microscopic spacetime convexity principle for fully nonlinear parabolic equations II: Spacetime quasiconcave solutions
  • DCDS Home
  • This Issue
  • Next Article
    Classifying GL$(n,\mathbb{Z})$-orbits of points and rational subspaces
September  2016, 36(9): 4739-4759. doi: 10.3934/dcds.2016006

Dominated splitting, partial hyperbolicity and positive entropy

1. 

Instituto de Matemática y Estadística Prof. Rafael Laguardia (IMERL), Facultad de Ingeniería, Universidad de la República

2. 

School of Mathematical Sciences, Fudan University, Shanghai 200433, China

Received  July 2015 Revised  March 2016 Published  May 2016

Let $f:M\rightarrow M$ be a $C^1$ diffeomorphism with a dominated splitting on a compact Riemanian manifold $M$ without boundary. We state and prove several sufficient conditions for the topological entropy of $f$ to be positive. The conditions deal with the dynamical behaviour of the (non-necessarily invariant) Lebesgue measure. In particular, if the Lebesgue measure is $\delta$-recurrent then the entropy of $f$ is positive. We give counterexamples showing that these sufficient conditions are not necessary. Finally, in the case of partially hyperbolic diffeomorphisms, we give a positive lower bound for the entropy relating it with the dimension of the unstable and stable sub-bundles.
Citation: Eleonora Catsigeras, Xueting Tian. Dominated splitting, partial hyperbolicity and positive entropy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4739-4759. doi: 10.3934/dcds.2016006
References:
[1]

L. Barreira and Y. B. Pesin, Nonuniform Hyperbolicity,, Cambridge Univ. Press, (2007).  doi: 10.1017/CBO9781107326026.  Google Scholar

[2]

J. Bochi and M. Viana, The Lyapunov exponents of generic volume preserving and symplectic systems,, Ann. of Math., 161 (2005), 1423.  doi: 10.4007/annals.2005.161.1423.  Google Scholar

[3]

C. Bonatti, L. Diaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective,, Encyclopaedia of Mathematical Sciences, (2005).   Google Scholar

[4]

R. Bowen, Periodic point and measures for axiom-A-diffeomorphisms,, Trans. Amer. Math. Soc., 154 (1971), 377.   Google Scholar

[5]

R. Bowen, Topological entropy for noncompact sets,, Trans. Amer. Math. Soc., 184 (1973), 125.  doi: 10.1090/S0002-9947-1973-0338317-X.  Google Scholar

[6]

E. Catsigeras, M. Cerminara and H. Enrich, Pesin's entropy formula for $C^1$ diffeomorphisms with dominated splitting,, Ergodic Theory and Dynamical Systems, 35 (2015), 737.  doi: 10.1017/etds.2013.93.  Google Scholar

[7]

E. Catsigeras and H. Enrich, SRB-like measures for $C^0$ dynamics,, Bull. Pol. Acad. Sci. Math., 59 (2011), 151.  doi: 10.4064/ba59-2-5.  Google Scholar

[8]

M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on the Compact Space,, Lecture Notes in Mathematics, ().   Google Scholar

[9]

L. J. Díaz, T. Fisher, M. J. Pacifico and J. L. Vieitez, Symbolic extensions for partially hyperbolic diffeomorphisms,, Discrete and Continuous Dynamical Systems, 32 (2012), 4195.  doi: 10.3934/dcds.2012.32.4195.  Google Scholar

[10]

N. Gourmelon, Addapted metrics for dominated splitting,, Ergod. Th. and Dyn. Sys., 27 (2007), 1839.  doi: 10.1017/S0143385707000272.  Google Scholar

[11]

N. Gourmelon and R. Potrie, Projectively Anosov Diffeomorphisms of Surfaces,, Preprint to appear. Personal communication, (2015).   Google Scholar

[12]

G. Liao, M. Viana and J. Yang, The entropy conjecture for diffeomorphisms away from tangencies,, Journal of the European Mathematical Society, 15 (2013), 2043.  doi: 10.4171/JEMS/413.  Google Scholar

[13]

V. I. Oseledec, Multiplicative ergodic theorem, Lyapunov characteristic numbers for dynamical systems,, Trans. Moscow Math. Soc., 19 (1968), 179.   Google Scholar

[14]

M. J. Pacifico and J. L. Vieitez, Entropy-expansiveness and domination for surface diffeomorphisms,, Rev. Mat. Complut., 21 (2008), 293.  doi: 10.5209/rev_REMA.2008.v21.n2.16370.  Google Scholar

[15]

H. Qiu, Existence and uniqueness of SRB measure on $C^1$ generic hyperbolic attractors,, Commun. Math. Phys., 302 (2011), 345.  doi: 10.1007/s00220-010-1160-2.  Google Scholar

[16]

R. Saghin, W. Sun and E. Vargas, Ergodic properties of time-changes for flows,, preprint., ().   Google Scholar

[17]

N. Sumi, P. Varandas and K. Yamamoto, Partial hyperbolicity and specification,, Proc. Amer. Math. Soc., 144 (2016), 1161.  doi: 10.1090/proc/12830.  Google Scholar

[18]

W. Sun and X. Tian, Dominated splitting and Pesin's entropy formula,, Discrete and Continuous Dynamical Systems, 32 (2012), 1421.   Google Scholar

[19]

P. Walters, An Introduction to Ergodic Theory,, Springer-Verlag, (1982).   Google Scholar

[20]

J. Yang, $C^1$ dynamics far from tangencies,, preprint., ().   Google Scholar

show all references

References:
[1]

L. Barreira and Y. B. Pesin, Nonuniform Hyperbolicity,, Cambridge Univ. Press, (2007).  doi: 10.1017/CBO9781107326026.  Google Scholar

[2]

J. Bochi and M. Viana, The Lyapunov exponents of generic volume preserving and symplectic systems,, Ann. of Math., 161 (2005), 1423.  doi: 10.4007/annals.2005.161.1423.  Google Scholar

[3]

C. Bonatti, L. Diaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective,, Encyclopaedia of Mathematical Sciences, (2005).   Google Scholar

[4]

R. Bowen, Periodic point and measures for axiom-A-diffeomorphisms,, Trans. Amer. Math. Soc., 154 (1971), 377.   Google Scholar

[5]

R. Bowen, Topological entropy for noncompact sets,, Trans. Amer. Math. Soc., 184 (1973), 125.  doi: 10.1090/S0002-9947-1973-0338317-X.  Google Scholar

[6]

E. Catsigeras, M. Cerminara and H. Enrich, Pesin's entropy formula for $C^1$ diffeomorphisms with dominated splitting,, Ergodic Theory and Dynamical Systems, 35 (2015), 737.  doi: 10.1017/etds.2013.93.  Google Scholar

[7]

E. Catsigeras and H. Enrich, SRB-like measures for $C^0$ dynamics,, Bull. Pol. Acad. Sci. Math., 59 (2011), 151.  doi: 10.4064/ba59-2-5.  Google Scholar

[8]

M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on the Compact Space,, Lecture Notes in Mathematics, ().   Google Scholar

[9]

L. J. Díaz, T. Fisher, M. J. Pacifico and J. L. Vieitez, Symbolic extensions for partially hyperbolic diffeomorphisms,, Discrete and Continuous Dynamical Systems, 32 (2012), 4195.  doi: 10.3934/dcds.2012.32.4195.  Google Scholar

[10]

N. Gourmelon, Addapted metrics for dominated splitting,, Ergod. Th. and Dyn. Sys., 27 (2007), 1839.  doi: 10.1017/S0143385707000272.  Google Scholar

[11]

N. Gourmelon and R. Potrie, Projectively Anosov Diffeomorphisms of Surfaces,, Preprint to appear. Personal communication, (2015).   Google Scholar

[12]

G. Liao, M. Viana and J. Yang, The entropy conjecture for diffeomorphisms away from tangencies,, Journal of the European Mathematical Society, 15 (2013), 2043.  doi: 10.4171/JEMS/413.  Google Scholar

[13]

V. I. Oseledec, Multiplicative ergodic theorem, Lyapunov characteristic numbers for dynamical systems,, Trans. Moscow Math. Soc., 19 (1968), 179.   Google Scholar

[14]

M. J. Pacifico and J. L. Vieitez, Entropy-expansiveness and domination for surface diffeomorphisms,, Rev. Mat. Complut., 21 (2008), 293.  doi: 10.5209/rev_REMA.2008.v21.n2.16370.  Google Scholar

[15]

H. Qiu, Existence and uniqueness of SRB measure on $C^1$ generic hyperbolic attractors,, Commun. Math. Phys., 302 (2011), 345.  doi: 10.1007/s00220-010-1160-2.  Google Scholar

[16]

R. Saghin, W. Sun and E. Vargas, Ergodic properties of time-changes for flows,, preprint., ().   Google Scholar

[17]

N. Sumi, P. Varandas and K. Yamamoto, Partial hyperbolicity and specification,, Proc. Amer. Math. Soc., 144 (2016), 1161.  doi: 10.1090/proc/12830.  Google Scholar

[18]

W. Sun and X. Tian, Dominated splitting and Pesin's entropy formula,, Discrete and Continuous Dynamical Systems, 32 (2012), 1421.   Google Scholar

[19]

P. Walters, An Introduction to Ergodic Theory,, Springer-Verlag, (1982).   Google Scholar

[20]

J. Yang, $C^1$ dynamics far from tangencies,, preprint., ().   Google Scholar

[1]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[2]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[3]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[4]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[5]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[6]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[7]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[8]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[9]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[10]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[11]

V. Kumar Murty, Ying Zong. Splitting of abelian varieties. Advances in Mathematics of Communications, 2014, 8 (4) : 511-519. doi: 10.3934/amc.2014.8.511

[12]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021  doi: 10.3934/fods.2021005

[13]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[14]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[15]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[16]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[17]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[18]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (73)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]