-
Previous Article
Neumann problem for non-divergence elliptic and parabolic equations with BMO$_x$ coefficients in weighted Sobolev spaces
- DCDS Home
- This Issue
-
Next Article
Stationary waves to the two-fluid non-isentropic Navier-Stokes-Poisson system in a half line: Existence, stability and convergence rate
Generic absence of finite blocking for interior points of Birkhoff billiards
1. | Department of Mathematics, Indiana University, Bloomington, IN 47405, United States, United States |
References:
[1] |
V. Bangert and E. Gutkin, Insecurity for compact surfaces of positive genus,, Geom. Dedicata, 146 (2010), 165.
doi: 10.1007/s10711-009-9432-8. |
[2] |
R. Bishop, Circular billiard tables, conjugate loci, and a cardiod,, Regul. Chaotic Dyn., 8 (2003), 83.
doi: 10.1070/RD2003v008n01ABEH000227. |
[3] |
J. Bruce and P. Giblin, Curves and Singularities: A Geometrical Introduction to Singularity Theory,, Cambridge University Press, (1984).
|
[4] |
K. Burns and M. Gidea, Differential Geometry and Topology: With a View to Dynamical Systems,, Chapman & Hall/CRC, (2005).
|
[5] |
K. Burns and E. Gutkin, Growth of the number of geodesics between points and insecurity for Riemannian manifolds,, Discrete Contin. Dyn. Syst., 21 (2008), 403.
doi: 10.3934/dcds.2008.21.403. |
[6] |
M. Farber, Topology of Billiard Problems, I,, Duke Math J., 115 (2002), 559.
doi: 10.1215/S0012-7094-02-11535-X. |
[7] |
M. Farber, Topology of Billiard Problems, II,, Duke Math J., 115 (2002), 587.
doi: 10.1215/S0012-7094-02-11535-X. |
[8] |
M. Gerber and L. Liu, Real analytic metrics on $S^{2}$ with total absence of finite blocking,, Geom. Dedicata, 166 (2013), 99.
doi: 10.1007/s10711-012-9787-0. |
[9] |
M. Gerber and W.-K. Ku, A dense G-delta set of Riemannian metrics without the finite blocking property,, Math. Res. Lett., 18 (2011), 389.
doi: 10.4310/MRL.2011.v18.n3.a1. |
[10] |
E. Gutkin, Billiards on almost integrable polyhedral surfaces,, Ergodic Theory Dynam. Sys., 4 (1984), 569.
doi: 10.1017/S0143385700002650. |
[11] |
E. Gutkin, Blocking of billiard orbits and security for polygons and flat surfaces,, Geom. Funct. Anal., 15 (2005), 83.
doi: 10.1007/s00039-005-0502-2. |
[12] |
E. Gutkin, Billiard dynamics: An updated survey with the emphasis on open problems,, Chaos, 22 (2012).
doi: 10.1063/1.4729307. |
[13] |
E. Gutkin, P. Hubert and T. Schmidt, Affine diffeomorphisms of translation surfaces: Periodic points, Fuchsian groups, and arithmeticity,, Ann. Sci. École Norm. Sup. (4), 36 (2003), 847.
doi: 10.1016/j.ansens.2003.05.001. |
[14] |
E. Gutkin and C. Judge, The geometry and arithmetic of translation surfaces with applications to polygonal billiards,, Math. Res. Lett., 3 (1996), 391.
doi: 10.4310/MRL.1996.v3.n3.a8. |
[15] |
E. Gutkin and C. Judge, Affine mappings of translation surfaces: Geometry and arithmetic,, Duke Math. J., 103 (2000), 191.
doi: 10.1215/S0012-7094-00-10321-3. |
[16] |
E. Gutkin and V. Schroeder, Connecting geodesics and security of configurations in compact locally symmetric spaces,, Geom. Dedicata, 118 (2006), 185.
doi: 10.1007/s10711-005-9036-x. |
[17] |
W. Ho, On blocking numbers of surfaces,, preprint, (2008). Google Scholar |
[18] |
A. Katok and B. Hasselblatt, Modern Theory of Dynamical Systems,, Cambridge University Press, (1995).
doi: 10.1017/CBO9780511809187. |
[19] |
J.-F. Lafont and B. Schmidt, Blocking light in compact Riemannian manifolds,, Geom. Topol., 11 (2007), 867.
doi: 10.2140/gt.2007.11.867. |
[20] |
T. Monteil, A counter-example to the theorem of Hiemer and Snurnikov,, J. Statist. Phys., 114 (2004), 1619.
doi: 10.1023/B:JOSS.0000013974.81162.20. |
[21] |
J. Oxtoby, Measure and Category, Second Edition,, Springer-Verlag, (1980).
|
[22] |
W. Rudin, Principles of Mathematical Analysis, Third Edition,, McGraw Hill, (1976).
|
[23] |
S. Tabachnikov, Geometry and Billiards,, American Mathematical Society, (2005).
doi: 10.1090/stml/030. |
[24] |
S. Tabachnikov, Birkhoff billiards are insecure,, Discrete Contin. Dyn. Syst., 23 (2009), 1035.
doi: 10.3934/dcds.2009.23.1035. |
[25] |
W. Veech, Teichmüller curves in moduli space, Eisenstein series, and an application to triangular billiards,, Invent. Math., 97 (1989), 553.
doi: 10.1007/BF01388890. |
[26] |
W. Veech, The billiard in a regular polygon,, Geom. Funct. Anal., 2 (1992), 341.
doi: 10.1007/BF01896876. |
[27] |
Ya. Vorobets, On the measure of the set of periodic points of a billiard,, Math. Notes, 55 (1994), 455.
doi: 10.1007/BF02110371. |
[28] |
M. Wojtkowski, Principles for the design of billiards with nonvanishing Lyapunov exponents,, Comm. Math. Phys., 105 (1986), 391.
doi: 10.1007/BF01205934. |
show all references
References:
[1] |
V. Bangert and E. Gutkin, Insecurity for compact surfaces of positive genus,, Geom. Dedicata, 146 (2010), 165.
doi: 10.1007/s10711-009-9432-8. |
[2] |
R. Bishop, Circular billiard tables, conjugate loci, and a cardiod,, Regul. Chaotic Dyn., 8 (2003), 83.
doi: 10.1070/RD2003v008n01ABEH000227. |
[3] |
J. Bruce and P. Giblin, Curves and Singularities: A Geometrical Introduction to Singularity Theory,, Cambridge University Press, (1984).
|
[4] |
K. Burns and M. Gidea, Differential Geometry and Topology: With a View to Dynamical Systems,, Chapman & Hall/CRC, (2005).
|
[5] |
K. Burns and E. Gutkin, Growth of the number of geodesics between points and insecurity for Riemannian manifolds,, Discrete Contin. Dyn. Syst., 21 (2008), 403.
doi: 10.3934/dcds.2008.21.403. |
[6] |
M. Farber, Topology of Billiard Problems, I,, Duke Math J., 115 (2002), 559.
doi: 10.1215/S0012-7094-02-11535-X. |
[7] |
M. Farber, Topology of Billiard Problems, II,, Duke Math J., 115 (2002), 587.
doi: 10.1215/S0012-7094-02-11535-X. |
[8] |
M. Gerber and L. Liu, Real analytic metrics on $S^{2}$ with total absence of finite blocking,, Geom. Dedicata, 166 (2013), 99.
doi: 10.1007/s10711-012-9787-0. |
[9] |
M. Gerber and W.-K. Ku, A dense G-delta set of Riemannian metrics without the finite blocking property,, Math. Res. Lett., 18 (2011), 389.
doi: 10.4310/MRL.2011.v18.n3.a1. |
[10] |
E. Gutkin, Billiards on almost integrable polyhedral surfaces,, Ergodic Theory Dynam. Sys., 4 (1984), 569.
doi: 10.1017/S0143385700002650. |
[11] |
E. Gutkin, Blocking of billiard orbits and security for polygons and flat surfaces,, Geom. Funct. Anal., 15 (2005), 83.
doi: 10.1007/s00039-005-0502-2. |
[12] |
E. Gutkin, Billiard dynamics: An updated survey with the emphasis on open problems,, Chaos, 22 (2012).
doi: 10.1063/1.4729307. |
[13] |
E. Gutkin, P. Hubert and T. Schmidt, Affine diffeomorphisms of translation surfaces: Periodic points, Fuchsian groups, and arithmeticity,, Ann. Sci. École Norm. Sup. (4), 36 (2003), 847.
doi: 10.1016/j.ansens.2003.05.001. |
[14] |
E. Gutkin and C. Judge, The geometry and arithmetic of translation surfaces with applications to polygonal billiards,, Math. Res. Lett., 3 (1996), 391.
doi: 10.4310/MRL.1996.v3.n3.a8. |
[15] |
E. Gutkin and C. Judge, Affine mappings of translation surfaces: Geometry and arithmetic,, Duke Math. J., 103 (2000), 191.
doi: 10.1215/S0012-7094-00-10321-3. |
[16] |
E. Gutkin and V. Schroeder, Connecting geodesics and security of configurations in compact locally symmetric spaces,, Geom. Dedicata, 118 (2006), 185.
doi: 10.1007/s10711-005-9036-x. |
[17] |
W. Ho, On blocking numbers of surfaces,, preprint, (2008). Google Scholar |
[18] |
A. Katok and B. Hasselblatt, Modern Theory of Dynamical Systems,, Cambridge University Press, (1995).
doi: 10.1017/CBO9780511809187. |
[19] |
J.-F. Lafont and B. Schmidt, Blocking light in compact Riemannian manifolds,, Geom. Topol., 11 (2007), 867.
doi: 10.2140/gt.2007.11.867. |
[20] |
T. Monteil, A counter-example to the theorem of Hiemer and Snurnikov,, J. Statist. Phys., 114 (2004), 1619.
doi: 10.1023/B:JOSS.0000013974.81162.20. |
[21] |
J. Oxtoby, Measure and Category, Second Edition,, Springer-Verlag, (1980).
|
[22] |
W. Rudin, Principles of Mathematical Analysis, Third Edition,, McGraw Hill, (1976).
|
[23] |
S. Tabachnikov, Geometry and Billiards,, American Mathematical Society, (2005).
doi: 10.1090/stml/030. |
[24] |
S. Tabachnikov, Birkhoff billiards are insecure,, Discrete Contin. Dyn. Syst., 23 (2009), 1035.
doi: 10.3934/dcds.2009.23.1035. |
[25] |
W. Veech, Teichmüller curves in moduli space, Eisenstein series, and an application to triangular billiards,, Invent. Math., 97 (1989), 553.
doi: 10.1007/BF01388890. |
[26] |
W. Veech, The billiard in a regular polygon,, Geom. Funct. Anal., 2 (1992), 341.
doi: 10.1007/BF01896876. |
[27] |
Ya. Vorobets, On the measure of the set of periodic points of a billiard,, Math. Notes, 55 (1994), 455.
doi: 10.1007/BF02110371. |
[28] |
M. Wojtkowski, Principles for the design of billiards with nonvanishing Lyapunov exponents,, Comm. Math. Phys., 105 (1986), 391.
doi: 10.1007/BF01205934. |
[1] |
Palash Sarkar, Subhadip Singha. Verifying solutions to LWE with implications for concrete security. Advances in Mathematics of Communications, 2021, 15 (2) : 257-266. doi: 10.3934/amc.2020057 |
[2] |
Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781 |
[3] |
Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637 |
[4] |
Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025 |
[5] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
[6] |
Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196 |
[7] |
Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]