Citation: |
[1] |
H. Aimar and R. A. Macías, Weighted norm inequalities for the Hardy-Littlewood maximal operator on spaces of homogeneous type, Proc. Amer. Math. Soc., 91 (1984), 213-216. |
[2] |
F. Chiarenza, M. Frasca and P. Longo, Interior $W^{2,p}$ estimates for nondivergence elliptic equations with discontinuous coefficients, Ricerche Mat., 40 (1991), 149-168. |
[3] |
F. Chiarenza, M. Frasca and P. Longo, $W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients, Trans. Amer. Math. Soc., 336 (1993), 841-853.doi: 10.2307/2154379. |
[4] |
G. Di Fazio and D. K. Palagachev, Oblique derivative problem for elliptic equations in non-divergence form with VMO coefficients, Comment. Math. Univ. Carolin., 37 (1996), 537-556. |
[5] |
H. Dong, Parabolic equations with variably partially VMO coefficients, Algebra i Analiz, 23 (2011), 150-174.doi: 10.1090/S1061-0022-2012-01206-9. |
[6] |
H. Dong, Solvability of parabolic equations in divergence form with partially BMO coefficients, J. Funct. Anal., 258 (2010), 2145-2172.doi: 10.1016/j.jfa.2010.01.003. |
[7] |
H. Dong and D. Kim, $L_p$ solvability of divergence type parabolic and elliptic systems with partially BMO coefficients, Calc. Var. Partial Differential Equations, 40 (2011), 357-389.doi: 10.1007/s00526-010-0344-0. |
[8] |
H. Dong and D. Kim, On the $L_p$-solvability of higher order parabolic and elliptic systems with BMO coefficients, Arch. Ration. Mech. Anal., 199 (2011), 889-941.doi: 10.1007/s00205-010-0345-3. |
[9] |
H. Dong and D. Kim, Elliptic and parabolic equations with measurable coefficients in weighted Sobolev spaces, Adv. Math., 274 (2015), 681-735.doi: 10.1016/j.aim.2014.12.037. |
[10] |
H. Dong and H. Zhang, Conormal problem of higher-order parabolic systems, Trans. Amer. Math. Soc., 368 (2016), 7413-7460.doi: 10.1090/tran/6605. |
[11] |
D. Kim, Parabolic equations with measurable coefficients. II, J. Math. Anal. Appl., 334 (2007), 534-548.doi: 10.1016/j.jmaa.2006.12.077. |
[12] |
I. Kim, K.-H. Kim and K. Lee, A weighted $L_p$-theory for divergence type parabolic PDEs with BMO coefficients on $C^1$-domains, J. Math. Anal. Appl., 412 (2014), 589-612.doi: 10.1016/j.jmaa.2013.10.079. |
[13] |
K.-H. Kim, A weighted Sobolev space theory of parabolic stochastic PDEs on non-smooth domains, J. Theoret. Probab., 27 (2014), 107-136.doi: 10.1007/s10959-012-0459-7. |
[14] |
K.-H. Kim and N. V. Krylov, On the Sobolev space theory of parabolic and elliptic equations in $C^1$ domains, SIAM J. Math. Anal., 36 (2004), 618-642.doi: 10.1137/S0036141003421145. |
[15] |
K.-H. Kim and K. Lee, A weighted $L_p$-theory for parabolic PDEs with BMO coefficients on $C^1$-domains, J. Differential Equations, 254 (2013), 368-407.doi: 10.1016/j.jde.2012.08.002. |
[16] |
V. Kozlov and A. Nazarov, Oblique derivative problem for non-divergence parabolic equations with time-discontinuous coefficients, In Proceedings of the St. Petersburg Mathematical Society. Vol. XV. Advances in mathematical analysis of partial differential equations, volume 232 of Amer. Math. Soc. Transl. Ser. 2, 177-191. Amer. Math. Soc., Providence, RI, 2014. |
[17] |
V. Kozlov and A. Nazarov, The Dirichlet problem for non-divergence parabolic equations with discontinuous in time coefficients, Math. Nachr., 282 (2009), 1220-1241.doi: 10.1002/mana.200910796. |
[18] |
N. V. Krylov, A $W^n_2$-theory of the Dirichlet problem for SPDEs in general smooth domains, Probab. Theory Related Fields, 98 (1994), 389-421.doi: 10.1007/BF01192260. |
[19] |
N. V. Krylov, Weighted Sobolev spaces and Laplace's equation and the heat equations in a half space, Comm. Partial Differential Equations, 24 (1999), 1611-1653.doi: 10.1080/03605309908821478. |
[20] |
N. V. Krylov, Parabolic and elliptic equations with VMO coefficients, Comm. Partial Differential Equations, 32 (2007), 453-475.doi: 10.1080/03605300600781626. |
[21] |
N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, volume 96 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2008.doi: 10.1090/gsm/096. |
[22] |
N. V. Krylov, On divergence form {SPDE}s with VMO coefficients in a half space, Stochastic Process. Appl., 119 (2009), 2095-2117.doi: 10.1016/j.spa.2008.11.003. |
[23] |
N. V. Krylov and S. V. Lototsky, A Sobolev space theory of SPDEs with constant coefficients in a half space, SIAM J. Math. Anal., 31 (1999), 19-33.doi: 10.1137/S0036141098338843. |
[24] |
N. V. Krylov and S. V. Lototsky, A Sobolev space theory of SPDEs with constant coefficients on a half line, SIAM J. Math. Anal., 30 (1999), 298-325.doi: 10.1137/S0036141097326908. |
[25] |
N. V. Krylov, Parabolic equations with VMO coefficients in sobolev spaces with mixed norms, J. Funct. Anal., 250 (2007), 521-558.doi: 10.1016/j.jfa.2007.04.003. |
[26] |
A. Kufner, Weighted Sobolev Spaces, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1985. Translated from the Czech. |
[27] |
N. Nadirashvili, Nonuniqueness in the martingale problem and the Dirichlet problem for uniformly elliptic operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24 (1997), 537-549. |
[28] |
N. N. Ural'ceva, The impossibility of $W_q{}^{2}$ estimates for multidimensional elliptic equations with discontinuous coefficients, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 5 (1967), 250-254. |