-
Previous Article
Existence and uniqueness of solutions for a model of non-sarcomeric actomyosin bundles
- DCDS Home
- This Issue
-
Next Article
Regularity criteria for the Boussinesq system with temperature-dependent viscosity and thermal diffusivity in a bounded domain
Multiple periodic solutions of delay differential systems with $2k-1$ lags via variational approach
1. | School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China |
2. | Department of Foundation Courses, Beijing Union University, Beijing 100101, China |
References:
[1] |
Discrete and Cont. Dynamicals Sys., 3 (1997), 251-264.
doi: 10.3934/dcds.1997.3.251. |
[2] |
Nonlinear Anal., 65 (2006), 25-39.
doi: 10.1016/j.na.2005.06.011. |
[3] |
Nonlinear Anal., 65 (2006), 40-58.
doi: 10.1016/j.na.2005.06.012. |
[4] |
Acta Appl. Math. Sinica(in Chinese), 17 (1994), 173-181. Google Scholar |
[5] |
Chinese Sci. Bull., 42 (1997), 444-447.
doi: 10.1007/BF02882587. |
[6] |
Acta Math. Sinica(New Series), 12 (1996), 113-121.
doi: 10.1007/BF02108151. |
[7] |
Chinese Ann. Math., 15 (1994), 217-224. |
[8] |
J. Differential Equations, 218 (2005), 15-35.
doi: 10.1016/j.jde.2005.08.007. |
[9] |
J. Dynam. Differential Equations, 23 (2011), 1029-1052.
doi: 10.1007/s10884-011-9228-z. |
[10] |
J. Math. Anal. Appl., 48 (1974), 317-324.
doi: 10.1016/0022-247X(74)90162-0. |
[11] |
Nonlinear Anal., 31 (1998), 45-54.
doi: 10.1016/S0362-546X(96)00058-2. |
[12] |
Sci. China Ser. A, 42 (1999), 957-964.
doi: 10.1007/BF02880387. |
[13] |
Nonlinear Analysis, TMA, 35 (1999), 457-474.
doi: 10.1016/S0362-546X(97)00623-8. |
[14] |
J. Differential Equations, 78 (1989), 53-73.
doi: 10.1016/0022-0396(89)90075-2. |
[15] |
Springer-Verlag, New Yorke, 1989.
doi: 10.1007/978-1-4757-2061-7. |
[16] |
Proc. Loyal Soc. Edingburgh, 81 (1978), 131-151.
doi: 10.1017/S0308210500010490. |
show all references
References:
[1] |
Discrete and Cont. Dynamicals Sys., 3 (1997), 251-264.
doi: 10.3934/dcds.1997.3.251. |
[2] |
Nonlinear Anal., 65 (2006), 25-39.
doi: 10.1016/j.na.2005.06.011. |
[3] |
Nonlinear Anal., 65 (2006), 40-58.
doi: 10.1016/j.na.2005.06.012. |
[4] |
Acta Appl. Math. Sinica(in Chinese), 17 (1994), 173-181. Google Scholar |
[5] |
Chinese Sci. Bull., 42 (1997), 444-447.
doi: 10.1007/BF02882587. |
[6] |
Acta Math. Sinica(New Series), 12 (1996), 113-121.
doi: 10.1007/BF02108151. |
[7] |
Chinese Ann. Math., 15 (1994), 217-224. |
[8] |
J. Differential Equations, 218 (2005), 15-35.
doi: 10.1016/j.jde.2005.08.007. |
[9] |
J. Dynam. Differential Equations, 23 (2011), 1029-1052.
doi: 10.1007/s10884-011-9228-z. |
[10] |
J. Math. Anal. Appl., 48 (1974), 317-324.
doi: 10.1016/0022-247X(74)90162-0. |
[11] |
Nonlinear Anal., 31 (1998), 45-54.
doi: 10.1016/S0362-546X(96)00058-2. |
[12] |
Sci. China Ser. A, 42 (1999), 957-964.
doi: 10.1007/BF02880387. |
[13] |
Nonlinear Analysis, TMA, 35 (1999), 457-474.
doi: 10.1016/S0362-546X(97)00623-8. |
[14] |
J. Differential Equations, 78 (1989), 53-73.
doi: 10.1016/0022-0396(89)90075-2. |
[15] |
Springer-Verlag, New Yorke, 1989.
doi: 10.1007/978-1-4757-2061-7. |
[16] |
Proc. Loyal Soc. Edingburgh, 81 (1978), 131-151.
doi: 10.1017/S0308210500010490. |
[1] |
Chiun-Chuan Chen, Hung-Yu Chien, Chih-Chiang Huang. A variational approach to three-phase traveling waves for a gradient system. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021055 |
[2] |
Jing Li, Gui-Quan Sun, Zhen Jin. Interactions of time delay and spatial diffusion induce the periodic oscillation of the vegetation system. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021127 |
[3] |
Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021025 |
[4] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[5] |
Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209 |
[6] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[7] |
Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021099 |
[8] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[9] |
Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026 |
[10] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[11] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[12] |
Maoding Zhen, Binlin Zhang, Xiumei Han. A new approach to get solutions for Kirchhoff-type fractional Schrödinger systems involving critical exponents. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021115 |
[13] |
Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021038 |
[14] |
Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021100 |
[15] |
V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066 |
[16] |
Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3273-3293. doi: 10.3934/dcds.2020405 |
[17] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[18] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[19] |
Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237 |
[20] |
Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]