• Previous Article
    Topological conjugacy for Lipschitz perturbations of non-autonomous systems
  • DCDS Home
  • This Issue
  • Next Article
    Optimal convergence rate of the multitype sticky particle approximation of one-dimensional diagonal hyperbolic systems with monotonic initial data
September  2016, 36(9): 4997-5010. doi: 10.3934/dcds.2016016

Finite-time blowup of solutions to some activator-inhibitor systems

1. 

Instytut Matematyczny, Uniwersytet Wrocławski, pl. Grunwaldzki 2/4, 50-384 Wrocław

2. 

College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512, Japan

Received  July 2015 Revised  February 2016 Published  May 2016

We study a dynamics of solutions to a system of reaction-diffusion equations modeling a biological pattern formation. This model has activator-inhibitor type nonlinearities and we show that it has solutions blowing up in a finite time. More precisely, in the case of absence of a diffusion of an activator, we show that there are solutions which blow up in a finite time at one point, only. This result holds true for the whole range of nonlinearity exponents in the considered activator-inhibitor system. Next, we consider a range of nonlinearities, where some space-homogeneous solutions blow up in a finite time and we show an analogous result for space-inhomogeneous solutions.
Citation: Grzegorz Karch, Kanako Suzuki, Jacek Zienkiewicz. Finite-time blowup of solutions to some activator-inhibitor systems. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4997-5010. doi: 10.3934/dcds.2016016
References:
[1]

M. Fila and K. Ninomiya, "Reaction-diffusion'' systems: Blow-up of solutions that arises or vanishes under diffusion, Uspekhi Mat. Nauk, 60 (2005), 207-226. doi: 10.1070/RM2005v060n06ABEH004289.

[2]

M. Guedda and M. Kirane, Diffusion terms in systems of reaction diffusion equations can lead to blow up, J. Math. Anal. Appl., 218 (1998), 325-327. doi: 10.1006/jmaa.1997.5757.

[3]

H. Jiang, Global existence of solutions of an activator-inhibitor system, Discrete Contin. Dyn. Syst., 14 (2006), 737-751. doi: 10.3934/dcds.2006.14.737.

[4]

G. Karali, T. Suzuki and Y. Yamada, Global-in-time behavior of the solution to a Gierer-Meinhardt system, Discrete Contin. Dyn. Syst., 33 (2013), 2885-2900. doi: 10.3934/dcds.2013.33.2885.

[5]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1968.

[6]

F. Li and W.-M. Ni, On the global existence and finite time blow-up of shadow systems, J. Differential Equations, 247 (2009), 1762-1776. doi: 10.1016/j.jde.2009.04.009.

[7]

M. D. Li, S. H. Chen and Y. C. Qin, Boundedness and blow up for the general activator-inhibitor model, Acta Math. Appl. Sinica (English Ser.), 11 (1995), 59-68. doi: 10.1007/BF02012623.

[8]

A. Marciniak-Czochra, Receptor-based models with diffusion-driven instability for pattern formation in Hydra, J. Biol. Sys. 199 (2006), 97-119. doi: 10.1142/S0218339003000889.

[9]

A. Marciniak-Czochra, G. Karch and K. Suzuki, Unstable patterns in reaction-diffusion model of early carcinogenesis, J. Math. Pures Appl., 99 (2013), 509-543. doi: 10.1016/j.matpur.2012.09.011.

[10]

A. Marciniak-Czochra, G. Karch, K. Suzuki and J. Zienkiewicz, Diffusion-driven blowup of nonnegative solutions to reaction-diffusion-ODE systems, To appear in Differential Integral Equations, arXiv:1511.02510, (2016).

[11]

K. Masuda and K. Takahashi, Reaction-diffusion systems in the Gierer-Meinhardt theory of biological pattern formation, Japan J. Appl. Math., 4 (1987), 47-58. doi: 10.1007/BF03167754.

[12]

A. Marciniak-Czochra and M. Kimmel, Dynamics of growth and signaling along linear and surface structures in very early tumors, Comput. Math. Methods Med., 7 (2006), 189-213. doi: 10.1080/10273660600969091.

[13]

A. Marciniak-Czochra and M. Kimmel, Reaction-diffusion model of early carcinogenesis: The effects of influx of mutated cells, Math. Model. Nat. Phenom., 3 (2008), 90-114. doi: 10.1051/mmnp:2008043.

[14]

H. Meinhardt and A. Gierer, A theory of biological pattern formation, Kybernetik (Berlin), 85 (1972), 30-39.

[15]

N. Mizoguchi, H. Ninomiya and E. Yanagida, Diffusion-induced blowup in a nonlinear parabolic system, J. Dynamics and Differential Equations, 10 (1998), 619-638. doi: 10.1023/A:1022633226140.

[16]

J. Morgan, On a question of blow-up for semilinear parabolic systems, Differential Integral Equations, 3 (1990), 973-978.

[17]

W.-M. Ni, K. Suzuki and I. Takagi, The dynamics of a kinetic activator-inhibitor system, J. Differential Equations, 229 (2006), 426-465. doi: 10.1016/j.jde.2006.03.011.

[18]

K. Pham, A. Chauviere, H. Hatzikirou, X. Li, H. M.. Byrne, V. Cristini and J. Lowengrub, Density-dependent quiescence in glioma invasion: Instability in a simple reaction-diffusion model for the migration/proliferation dichotomy, J. Biol. Dyn., 6 (2012), 54-71. doi: 10.1080/17513758.2011.590610.

[19]

M. Pierre and D. Schmitt, Blowup in reaction-diffusion systems with dissipation of mass, SIAM J. Math. Anal., 28 (1997), 259-269. doi: 10.1137/S0036141095295437.

[20]

M. Pierre and D. Schmitt, Blowup in reaction-diffusion systems with dissipation of mass, SIAM Rev., 42 (2000), 93-106. doi: 10.1137/S0036144599359735.

[21]

P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2007.

[22]

F. Rothe, Global Solutions of Reaction-Diffusion Systems, Lecture Notes in Mathematics, 1072, Springer-Verlag, Berlin, 1984.

[23]

K. Suzuki, Existence and Behavior of Solutions to a Reaction-Diffusion System Modeling Morphogenesis, PhD thesis, Tohoku University, Sendai, Japan, March 2006.

[24]

K. Suzuki and I. Takagi, On the role of basic production terms in an activator-inhibitor system modeling biological pattern formation, Funkcial. Ekvac., 54 (2011), 237-274. doi: 10.1619/fesi.54.237.

[25]

A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. B, 237 (1952), 37-72.

[26]

H. Zou, Global existence for Gierer-Meinhardt system, Discrete Contin. Dyn. Syst., 35 (2015), 583-591. doi: 10.3934/dcds.2015.35.583.

show all references

References:
[1]

M. Fila and K. Ninomiya, "Reaction-diffusion'' systems: Blow-up of solutions that arises or vanishes under diffusion, Uspekhi Mat. Nauk, 60 (2005), 207-226. doi: 10.1070/RM2005v060n06ABEH004289.

[2]

M. Guedda and M. Kirane, Diffusion terms in systems of reaction diffusion equations can lead to blow up, J. Math. Anal. Appl., 218 (1998), 325-327. doi: 10.1006/jmaa.1997.5757.

[3]

H. Jiang, Global existence of solutions of an activator-inhibitor system, Discrete Contin. Dyn. Syst., 14 (2006), 737-751. doi: 10.3934/dcds.2006.14.737.

[4]

G. Karali, T. Suzuki and Y. Yamada, Global-in-time behavior of the solution to a Gierer-Meinhardt system, Discrete Contin. Dyn. Syst., 33 (2013), 2885-2900. doi: 10.3934/dcds.2013.33.2885.

[5]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1968.

[6]

F. Li and W.-M. Ni, On the global existence and finite time blow-up of shadow systems, J. Differential Equations, 247 (2009), 1762-1776. doi: 10.1016/j.jde.2009.04.009.

[7]

M. D. Li, S. H. Chen and Y. C. Qin, Boundedness and blow up for the general activator-inhibitor model, Acta Math. Appl. Sinica (English Ser.), 11 (1995), 59-68. doi: 10.1007/BF02012623.

[8]

A. Marciniak-Czochra, Receptor-based models with diffusion-driven instability for pattern formation in Hydra, J. Biol. Sys. 199 (2006), 97-119. doi: 10.1142/S0218339003000889.

[9]

A. Marciniak-Czochra, G. Karch and K. Suzuki, Unstable patterns in reaction-diffusion model of early carcinogenesis, J. Math. Pures Appl., 99 (2013), 509-543. doi: 10.1016/j.matpur.2012.09.011.

[10]

A. Marciniak-Czochra, G. Karch, K. Suzuki and J. Zienkiewicz, Diffusion-driven blowup of nonnegative solutions to reaction-diffusion-ODE systems, To appear in Differential Integral Equations, arXiv:1511.02510, (2016).

[11]

K. Masuda and K. Takahashi, Reaction-diffusion systems in the Gierer-Meinhardt theory of biological pattern formation, Japan J. Appl. Math., 4 (1987), 47-58. doi: 10.1007/BF03167754.

[12]

A. Marciniak-Czochra and M. Kimmel, Dynamics of growth and signaling along linear and surface structures in very early tumors, Comput. Math. Methods Med., 7 (2006), 189-213. doi: 10.1080/10273660600969091.

[13]

A. Marciniak-Czochra and M. Kimmel, Reaction-diffusion model of early carcinogenesis: The effects of influx of mutated cells, Math. Model. Nat. Phenom., 3 (2008), 90-114. doi: 10.1051/mmnp:2008043.

[14]

H. Meinhardt and A. Gierer, A theory of biological pattern formation, Kybernetik (Berlin), 85 (1972), 30-39.

[15]

N. Mizoguchi, H. Ninomiya and E. Yanagida, Diffusion-induced blowup in a nonlinear parabolic system, J. Dynamics and Differential Equations, 10 (1998), 619-638. doi: 10.1023/A:1022633226140.

[16]

J. Morgan, On a question of blow-up for semilinear parabolic systems, Differential Integral Equations, 3 (1990), 973-978.

[17]

W.-M. Ni, K. Suzuki and I. Takagi, The dynamics of a kinetic activator-inhibitor system, J. Differential Equations, 229 (2006), 426-465. doi: 10.1016/j.jde.2006.03.011.

[18]

K. Pham, A. Chauviere, H. Hatzikirou, X. Li, H. M.. Byrne, V. Cristini and J. Lowengrub, Density-dependent quiescence in glioma invasion: Instability in a simple reaction-diffusion model for the migration/proliferation dichotomy, J. Biol. Dyn., 6 (2012), 54-71. doi: 10.1080/17513758.2011.590610.

[19]

M. Pierre and D. Schmitt, Blowup in reaction-diffusion systems with dissipation of mass, SIAM J. Math. Anal., 28 (1997), 259-269. doi: 10.1137/S0036141095295437.

[20]

M. Pierre and D. Schmitt, Blowup in reaction-diffusion systems with dissipation of mass, SIAM Rev., 42 (2000), 93-106. doi: 10.1137/S0036144599359735.

[21]

P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2007.

[22]

F. Rothe, Global Solutions of Reaction-Diffusion Systems, Lecture Notes in Mathematics, 1072, Springer-Verlag, Berlin, 1984.

[23]

K. Suzuki, Existence and Behavior of Solutions to a Reaction-Diffusion System Modeling Morphogenesis, PhD thesis, Tohoku University, Sendai, Japan, March 2006.

[24]

K. Suzuki and I. Takagi, On the role of basic production terms in an activator-inhibitor system modeling biological pattern formation, Funkcial. Ekvac., 54 (2011), 237-274. doi: 10.1619/fesi.54.237.

[25]

A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. B, 237 (1952), 37-72.

[26]

H. Zou, Global existence for Gierer-Meinhardt system, Discrete Contin. Dyn. Syst., 35 (2015), 583-591. doi: 10.3934/dcds.2015.35.583.

[1]

Huiqiang Jiang. Global existence of solutions of an activator-inhibitor system. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 737-751. doi: 10.3934/dcds.2006.14.737

[2]

Shaohua Chen. Some properties for the solutions of a general activator-inhibitor model. Communications on Pure and Applied Analysis, 2006, 5 (4) : 919-928. doi: 10.3934/cpaa.2006.5.919

[3]

Marie Henry. Singular limit of an activator-inhibitor type model. Networks and Heterogeneous Media, 2012, 7 (4) : 781-803. doi: 10.3934/nhm.2012.7.781

[4]

Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042

[5]

Xiaoli Wang, Guohong Zhang. Bifurcation analysis of a general activator-inhibitor model with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4459-4477. doi: 10.3934/dcdsb.2020295

[6]

Victor Ogesa Juma, Leif Dehmelt, Stéphanie Portet, Anotida Madzvamuse. A mathematical analysis of an activator-inhibitor Rho GTPase model. Journal of Computational Dynamics, 2022, 9 (2) : 133-158. doi: 10.3934/jcd.2021024

[7]

Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure and Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229

[8]

Matthias Büger. Planar and screw-shaped solutions for a system of two reaction-diffusion equations on the circle. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 745-756. doi: 10.3934/dcds.2006.16.745

[9]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[10]

Qiang Liu, Zhichang Guo, Chunpeng Wang. Renormalized solutions to a reaction-diffusion system applied to image denoising. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1839-1858. doi: 10.3934/dcdsb.2016025

[11]

Hongwei Chen. Blow-up estimates of positive solutions of a reaction-diffusion system. Conference Publications, 2003, 2003 (Special) : 182-188. doi: 10.3934/proc.2003.2003.182

[12]

Jong-Shenq Guo, Yoshihisa Morita. Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 193-212. doi: 10.3934/dcds.2005.12.193

[13]

Michele V. Bartuccelli, K. B. Blyuss, Y. N. Kyrychko. Length scales and positivity of solutions of a class of reaction-diffusion equations. Communications on Pure and Applied Analysis, 2004, 3 (1) : 25-40. doi: 10.3934/cpaa.2004.3.25

[14]

Peter Poláčik, Eiji Yanagida. Stable subharmonic solutions of reaction-diffusion equations on an arbitrary domain. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 209-218. doi: 10.3934/dcds.2002.8.209

[15]

Cheng-Hsiung Hsu, Jian-Jhong Lin. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1757-1774. doi: 10.3934/dcdsb.2020001

[16]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[17]

Yansu Ji, Jianwei Shen, Xiaochen Mao. Pattern formation of Brusselator in the reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022103

[18]

A. Dall'Acqua. Positive solutions for a class of reaction-diffusion systems. Communications on Pure and Applied Analysis, 2003, 2 (1) : 65-76. doi: 10.3934/cpaa.2003.2.65

[19]

Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations and Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43

[20]

Martino Prizzi. A remark on reaction-diffusion equations in unbounded domains. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 281-286. doi: 10.3934/dcds.2003.9.281

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (4)

[Back to Top]