• Previous Article
    Topological conjugacy for Lipschitz perturbations of non-autonomous systems
  • DCDS Home
  • This Issue
  • Next Article
    Optimal convergence rate of the multitype sticky particle approximation of one-dimensional diagonal hyperbolic systems with monotonic initial data
September  2016, 36(9): 4997-5010. doi: 10.3934/dcds.2016016

Finite-time blowup of solutions to some activator-inhibitor systems

1. 

Instytut Matematyczny, Uniwersytet Wrocławski, pl. Grunwaldzki 2/4, 50-384 Wrocław

2. 

College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512, Japan

Received  July 2015 Revised  February 2016 Published  May 2016

We study a dynamics of solutions to a system of reaction-diffusion equations modeling a biological pattern formation. This model has activator-inhibitor type nonlinearities and we show that it has solutions blowing up in a finite time. More precisely, in the case of absence of a diffusion of an activator, we show that there are solutions which blow up in a finite time at one point, only. This result holds true for the whole range of nonlinearity exponents in the considered activator-inhibitor system. Next, we consider a range of nonlinearities, where some space-homogeneous solutions blow up in a finite time and we show an analogous result for space-inhomogeneous solutions.
Citation: Grzegorz Karch, Kanako Suzuki, Jacek Zienkiewicz. Finite-time blowup of solutions to some activator-inhibitor systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4997-5010. doi: 10.3934/dcds.2016016
References:
[1]

M. Fila and K. Ninomiya, "Reaction-diffusion'' systems: Blow-up of solutions that arises or vanishes under diffusion,, Uspekhi Mat. Nauk, 60 (2005), 207.  doi: 10.1070/RM2005v060n06ABEH004289.  Google Scholar

[2]

M. Guedda and M. Kirane, Diffusion terms in systems of reaction diffusion equations can lead to blow up,, J. Math. Anal. Appl., 218 (1998), 325.  doi: 10.1006/jmaa.1997.5757.  Google Scholar

[3]

H. Jiang, Global existence of solutions of an activator-inhibitor system,, Discrete Contin. Dyn. Syst., 14 (2006), 737.  doi: 10.3934/dcds.2006.14.737.  Google Scholar

[4]

G. Karali, T. Suzuki and Y. Yamada, Global-in-time behavior of the solution to a Gierer-Meinhardt system,, Discrete Contin. Dyn. Syst., 33 (2013), 2885.  doi: 10.3934/dcds.2013.33.2885.  Google Scholar

[5]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type,, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, (1968).   Google Scholar

[6]

F. Li and W.-M. Ni, On the global existence and finite time blow-up of shadow systems,, J. Differential Equations, 247 (2009), 1762.  doi: 10.1016/j.jde.2009.04.009.  Google Scholar

[7]

M. D. Li, S. H. Chen and Y. C. Qin, Boundedness and blow up for the general activator-inhibitor model,, Acta Math. Appl. Sinica (English Ser.), 11 (1995), 59.  doi: 10.1007/BF02012623.  Google Scholar

[8]

A. Marciniak-Czochra, Receptor-based models with diffusion-driven instability for pattern formation in Hydra,, J. Biol. Sys. 199 (2006), 199 (2006), 97.  doi: 10.1142/S0218339003000889.  Google Scholar

[9]

A. Marciniak-Czochra, G. Karch and K. Suzuki, Unstable patterns in reaction-diffusion model of early carcinogenesis,, J. Math. Pures Appl., 99 (2013), 509.  doi: 10.1016/j.matpur.2012.09.011.  Google Scholar

[10]

A. Marciniak-Czochra, G. Karch, K. Suzuki and J. Zienkiewicz, Diffusion-driven blowup of nonnegative solutions to reaction-diffusion-ODE systems,, To appear in Differential Integral Equations, (2016).   Google Scholar

[11]

K. Masuda and K. Takahashi, Reaction-diffusion systems in the Gierer-Meinhardt theory of biological pattern formation,, Japan J. Appl. Math., 4 (1987), 47.  doi: 10.1007/BF03167754.  Google Scholar

[12]

A. Marciniak-Czochra and M. Kimmel, Dynamics of growth and signaling along linear and surface structures in very early tumors,, Comput. Math. Methods Med., 7 (2006), 189.  doi: 10.1080/10273660600969091.  Google Scholar

[13]

A. Marciniak-Czochra and M. Kimmel, Reaction-diffusion model of early carcinogenesis: The effects of influx of mutated cells,, Math. Model. Nat. Phenom., 3 (2008), 90.  doi: 10.1051/mmnp:2008043.  Google Scholar

[14]

H. Meinhardt and A. Gierer, A theory of biological pattern formation,, Kybernetik (Berlin), 85 (1972), 30.   Google Scholar

[15]

N. Mizoguchi, H. Ninomiya and E. Yanagida, Diffusion-induced blowup in a nonlinear parabolic system,, J. Dynamics and Differential Equations, 10 (1998), 619.  doi: 10.1023/A:1022633226140.  Google Scholar

[16]

J. Morgan, On a question of blow-up for semilinear parabolic systems,, Differential Integral Equations, 3 (1990), 973.   Google Scholar

[17]

W.-M. Ni, K. Suzuki and I. Takagi, The dynamics of a kinetic activator-inhibitor system,, J. Differential Equations, 229 (2006), 426.  doi: 10.1016/j.jde.2006.03.011.  Google Scholar

[18]

K. Pham, A. Chauviere, H. Hatzikirou, X. Li, H. M.. Byrne, V. Cristini and J. Lowengrub, Density-dependent quiescence in glioma invasion: Instability in a simple reaction-diffusion model for the migration/proliferation dichotomy,, J. Biol. Dyn., 6 (2012), 54.  doi: 10.1080/17513758.2011.590610.  Google Scholar

[19]

M. Pierre and D. Schmitt, Blowup in reaction-diffusion systems with dissipation of mass,, SIAM J. Math. Anal., 28 (1997), 259.  doi: 10.1137/S0036141095295437.  Google Scholar

[20]

M. Pierre and D. Schmitt, Blowup in reaction-diffusion systems with dissipation of mass,, SIAM Rev., 42 (2000), 93.  doi: 10.1137/S0036144599359735.  Google Scholar

[21]

P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States,, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], (2007).   Google Scholar

[22]

F. Rothe, Global Solutions of Reaction-Diffusion Systems,, Lecture Notes in Mathematics, (1072).   Google Scholar

[23]

K. Suzuki, Existence and Behavior of Solutions to a Reaction-Diffusion System Modeling Morphogenesis,, PhD thesis, (2006).   Google Scholar

[24]

K. Suzuki and I. Takagi, On the role of basic production terms in an activator-inhibitor system modeling biological pattern formation,, Funkcial. Ekvac., 54 (2011), 237.  doi: 10.1619/fesi.54.237.  Google Scholar

[25]

A. M. Turing, The chemical basis of morphogenesis,, Phil. Trans. Roy. Soc. B, 237 (1952), 37.   Google Scholar

[26]

H. Zou, Global existence for Gierer-Meinhardt system,, Discrete Contin. Dyn. Syst., 35 (2015), 583.  doi: 10.3934/dcds.2015.35.583.  Google Scholar

show all references

References:
[1]

M. Fila and K. Ninomiya, "Reaction-diffusion'' systems: Blow-up of solutions that arises or vanishes under diffusion,, Uspekhi Mat. Nauk, 60 (2005), 207.  doi: 10.1070/RM2005v060n06ABEH004289.  Google Scholar

[2]

M. Guedda and M. Kirane, Diffusion terms in systems of reaction diffusion equations can lead to blow up,, J. Math. Anal. Appl., 218 (1998), 325.  doi: 10.1006/jmaa.1997.5757.  Google Scholar

[3]

H. Jiang, Global existence of solutions of an activator-inhibitor system,, Discrete Contin. Dyn. Syst., 14 (2006), 737.  doi: 10.3934/dcds.2006.14.737.  Google Scholar

[4]

G. Karali, T. Suzuki and Y. Yamada, Global-in-time behavior of the solution to a Gierer-Meinhardt system,, Discrete Contin. Dyn. Syst., 33 (2013), 2885.  doi: 10.3934/dcds.2013.33.2885.  Google Scholar

[5]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type,, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, (1968).   Google Scholar

[6]

F. Li and W.-M. Ni, On the global existence and finite time blow-up of shadow systems,, J. Differential Equations, 247 (2009), 1762.  doi: 10.1016/j.jde.2009.04.009.  Google Scholar

[7]

M. D. Li, S. H. Chen and Y. C. Qin, Boundedness and blow up for the general activator-inhibitor model,, Acta Math. Appl. Sinica (English Ser.), 11 (1995), 59.  doi: 10.1007/BF02012623.  Google Scholar

[8]

A. Marciniak-Czochra, Receptor-based models with diffusion-driven instability for pattern formation in Hydra,, J. Biol. Sys. 199 (2006), 199 (2006), 97.  doi: 10.1142/S0218339003000889.  Google Scholar

[9]

A. Marciniak-Czochra, G. Karch and K. Suzuki, Unstable patterns in reaction-diffusion model of early carcinogenesis,, J. Math. Pures Appl., 99 (2013), 509.  doi: 10.1016/j.matpur.2012.09.011.  Google Scholar

[10]

A. Marciniak-Czochra, G. Karch, K. Suzuki and J. Zienkiewicz, Diffusion-driven blowup of nonnegative solutions to reaction-diffusion-ODE systems,, To appear in Differential Integral Equations, (2016).   Google Scholar

[11]

K. Masuda and K. Takahashi, Reaction-diffusion systems in the Gierer-Meinhardt theory of biological pattern formation,, Japan J. Appl. Math., 4 (1987), 47.  doi: 10.1007/BF03167754.  Google Scholar

[12]

A. Marciniak-Czochra and M. Kimmel, Dynamics of growth and signaling along linear and surface structures in very early tumors,, Comput. Math. Methods Med., 7 (2006), 189.  doi: 10.1080/10273660600969091.  Google Scholar

[13]

A. Marciniak-Czochra and M. Kimmel, Reaction-diffusion model of early carcinogenesis: The effects of influx of mutated cells,, Math. Model. Nat. Phenom., 3 (2008), 90.  doi: 10.1051/mmnp:2008043.  Google Scholar

[14]

H. Meinhardt and A. Gierer, A theory of biological pattern formation,, Kybernetik (Berlin), 85 (1972), 30.   Google Scholar

[15]

N. Mizoguchi, H. Ninomiya and E. Yanagida, Diffusion-induced blowup in a nonlinear parabolic system,, J. Dynamics and Differential Equations, 10 (1998), 619.  doi: 10.1023/A:1022633226140.  Google Scholar

[16]

J. Morgan, On a question of blow-up for semilinear parabolic systems,, Differential Integral Equations, 3 (1990), 973.   Google Scholar

[17]

W.-M. Ni, K. Suzuki and I. Takagi, The dynamics of a kinetic activator-inhibitor system,, J. Differential Equations, 229 (2006), 426.  doi: 10.1016/j.jde.2006.03.011.  Google Scholar

[18]

K. Pham, A. Chauviere, H. Hatzikirou, X. Li, H. M.. Byrne, V. Cristini and J. Lowengrub, Density-dependent quiescence in glioma invasion: Instability in a simple reaction-diffusion model for the migration/proliferation dichotomy,, J. Biol. Dyn., 6 (2012), 54.  doi: 10.1080/17513758.2011.590610.  Google Scholar

[19]

M. Pierre and D. Schmitt, Blowup in reaction-diffusion systems with dissipation of mass,, SIAM J. Math. Anal., 28 (1997), 259.  doi: 10.1137/S0036141095295437.  Google Scholar

[20]

M. Pierre and D. Schmitt, Blowup in reaction-diffusion systems with dissipation of mass,, SIAM Rev., 42 (2000), 93.  doi: 10.1137/S0036144599359735.  Google Scholar

[21]

P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States,, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], (2007).   Google Scholar

[22]

F. Rothe, Global Solutions of Reaction-Diffusion Systems,, Lecture Notes in Mathematics, (1072).   Google Scholar

[23]

K. Suzuki, Existence and Behavior of Solutions to a Reaction-Diffusion System Modeling Morphogenesis,, PhD thesis, (2006).   Google Scholar

[24]

K. Suzuki and I. Takagi, On the role of basic production terms in an activator-inhibitor system modeling biological pattern formation,, Funkcial. Ekvac., 54 (2011), 237.  doi: 10.1619/fesi.54.237.  Google Scholar

[25]

A. M. Turing, The chemical basis of morphogenesis,, Phil. Trans. Roy. Soc. B, 237 (1952), 37.   Google Scholar

[26]

H. Zou, Global existence for Gierer-Meinhardt system,, Discrete Contin. Dyn. Syst., 35 (2015), 583.  doi: 10.3934/dcds.2015.35.583.  Google Scholar

[1]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[2]

Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042

[3]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[4]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[5]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[6]

Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021067

[7]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[8]

Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026

[9]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[10]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[11]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[12]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[13]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[14]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[15]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[16]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[17]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[18]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[19]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[20]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (4)

[Back to Top]