-
Previous Article
Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions
- DCDS Home
- This Issue
-
Next Article
Topological conjugacy for Lipschitz perturbations of non-autonomous systems
Global dynamics in a fully parabolic chemotaxis system with logistic source
1. | College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China |
For the dimensions $n=2$ and $n=3$, we establish results on the global existence and boundedness of classical solutions to the corresponding initial-boundary problem, provided that $\chi$, $\mu$ and $r$ satisfy some explicit conditions. Apart from this, we also show that if $\frac{\mu^{\frac{1}{r-1}}}{\chi}>20$ and $r\geq 2$ and $r\in \mathbb{N}$ the solution of the system approaches the steady state $\left(\mu^{-\frac{1}{r-1}}, \mu^{-\frac{1}{r-1}}\right)$ as time tends to infinity.
References:
[1] |
N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations,, Comm. Partial Differential Equations, 4 (1979), 827.
doi: 10.1080/03605307908820113. |
[2] |
N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Towards a mathematical theory of Keller-Segel models of pattern formation in biological tissues,, Math. Models Methods Appl. Sci., 25 (2015), 1663.
doi: 10.1142/S021820251550044X. |
[3] |
P. Biler, Existence and nonexistence of solutions for a model of gravitational interaction of particles III,, Colloq. Mathematicum, 68 (1995), 229.
|
[4] |
X. R. Cao, Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces,, Discrete Cont. Dyns. S-A., 35 (2015), 1891.
doi: 10.3934/dcds.2015.35.1891. |
[5] |
X. R. Cao, Boundedness in a three-dimensional chemotaxis-haptotaxis model,, Zeitschrift für angewandte Mathematik und Physik, 67 (2016).
doi: 10.1007/s00033-015-0601-3. |
[6] |
T. Cieślak and P. H. Laurençot, Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system,, Ann. I. H. Poincaré Anal. Non Linéaire, 27 (2010), 437.
doi: 10.1016/j.anihpc.2009.11.016. |
[7] |
T. Cieślak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions,, J. Differential Equations, 252 (2012), 5832.
doi: 10.1016/j.jde.2012.01.045. |
[8] |
T. Cieślak and C. Stinner, New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models,, J. Differential Equations, 258 (2015), 2080.
doi: 10.1016/j.jde.2014.12.004. |
[9] |
T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis,, Nonlinearity, 21 (2008), 1057.
doi: 10.1088/0951-7715/21/5/009. |
[10] |
A. Friedman and J. I. Tello, Stability of solutions of chemotaxis equations in reinforced random walks,, J. Math. Anal. Appl., 272 (2002), 138.
doi: 10.1016/S0022-247X(02)00147-6. |
[11] |
H. Gajewski and K. Zacharias, Global behavior of a reaction-diffusion system modelling chemotaxis,, Math. Nachr., 195 (1998), 77.
doi: 10.1002/mana.19981950106. |
[12] |
M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model,, Ann. Scuola Normale Superiore, 24 (1997), 633.
|
[13] |
D. Horstemann, Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species,, J. Nonlinear Sci., 21 (2011), 231.
doi: 10.1007/s00332-010-9082-x. |
[14] |
D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system,, J. Differential Equations, 215 (2005), 52.
doi: 10.1016/j.jde.2004.10.022. |
[15] |
S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains,, J. Differential Equations, 256 (2014), 2993.
doi: 10.1016/j.jde.2014.01.028. |
[16] |
W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Am. Math. Soc., 329 (1992), 819.
doi: 10.1090/S0002-9947-1992-1046835-6. |
[17] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399.
doi: 10.1016/0022-5193(70)90092-5. |
[18] |
R. Kowalczyk and Z. Szymańska, On the global existence of solutions to an aggregation model,, J. Math. Anal. Appl., 343 (2008), 379.
doi: 10.1016/j.jmaa.2008.01.005. |
[19] |
Y. H. Li, K. Lin and C. L. Mu, Boundedness and asymptotic behavior of solutions to a chemotaxis-haptotaxis model in high dimensions,, Appl. Math. Lett., 50 (2015), 91.
doi: 10.1016/j.aml.2015.06.010. |
[20] |
J. Lankeit, Chemotaxis can prevent thresholds on population density,, Discrete Cont. Dyns. S-B., 20 (2015), 1499.
doi: 10.3934/dcdsb.2015.20.1499. |
[21] |
J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source,, J. Differential Equations, 258 (2015), 1158.
doi: 10.1016/j.jde.2014.10.016. |
[22] |
M. M. Porzio and V. Vespri, Holder estimates for local solutions of some doubly nonlinear degenerate parabolic equations,, J. Differential Equations, 103 (1993), 146.
doi: 10.1006/jdeq.1993.1045. |
[23] |
T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system,, Adv. Math. Sci. Appl., 5 (1995), 581.
|
[24] |
T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains,, J. Inequal. Appl., 6 (2001), 37.
doi: 10.1155/S1025583401000042. |
[25] |
T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis,, Funkc. Ekvacioj. Ser. Int., 40 (1997), 411.
|
[26] |
M. Negreanu and J. I. Tello, On a two species chemotaxis model with slow chemical diffusion,, SIAM J. MAth. Anal., 46 (2014), 3761.
doi: 10.1137/140971853. |
[27] |
M. Negreanu and J. I. Tello, Asymptotic stability of a two species chemotaxis system with non-diffusive chemoattractant,, J. Differential Equations, 258 (2015), 1592.
doi: 10.1016/j.jde.2014.11.009. |
[28] |
K. Osaki, T. Tsujikawa, A. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations,, Nonlinear Anal., 51 (2002), 119.
doi: 10.1016/S0362-546X(01)00815-X. |
[29] |
K. Osaki and A. Yagi, Finite dimensional attractors for one-dimensional Keller-Segel equations,, Funkc. Ekvacioj. Ser. Int., 44 (2001), 441.
|
[30] |
Y. Tao, Boundedness in a two-dimensional chemotaxis-haptotaxis system,, , (). Google Scholar |
[31] |
Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692.
doi: 10.1016/j.jde.2011.08.019. |
[32] |
Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant,, J. Differential Equations, 252 (2012), 2520.
doi: 10.1016/j.jde.2011.07.010. |
[33] |
Y. Tao and M. Winkler, Dominance of chemotaxis in a chemotaxis-haptotaxis model,, Nonlinearity, 27 (2014), 1225.
doi: 10.1088/0951-7715/27/6/1225. |
[34] |
Y. Tao and M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant,, J. Differential Equations, 257 (2014), 784.
doi: 10.1016/j.jde.2014.04.014. |
[35] |
Y. Tao and M. Winkler, Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system,, Z. Angew. Math. Phys., 66 (2015), 2555.
doi: 10.1007/s00033-015-0541-y. |
[36] |
Y. Tao and M. Winkler, Persistence of mass in a chemotaxis system with logistic source,, J. Differential Equations, 259 (2015), 6142.
doi: 10.1016/j.jde.2015.07.019. |
[37] |
J. I. Tello and M. Winkler, A chemotaxis system with logistic source,, Comm. Partial Differential Equations, 32 (2007), 849.
doi: 10.1080/03605300701319003. |
[38] |
M. Winkler, Chemotaxis with logistic source: Very weak global solutions and boundedness properties,, J. Math. Anal Appl, 348 (2008), 708.
doi: 10.1016/j.jmaa.2008.07.071. |
[39] |
M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source,, Comm. Partial Differential Equations, 35 (2010), 1516.
doi: 10.1080/03605300903473426. |
[40] |
M. Winkler, Aggregation versus global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889.
doi: 10.1016/j.jde.2010.02.008. |
[41] |
M. Winkler, Does a volume-filling effect always prevent chemotactic collapse?,, Math. Methods Appl. Sci., 33 (2010), 12.
doi: 10.1002/mma.1146. |
[42] |
M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system,, J. Math. Pures Appl., 100 (2013), 748.
doi: 10.1016/j.matpur.2013.01.020. |
[43] |
M. Winkler, How far can chemotactic cross-diffusion enforce exceeding carrying capacities?,, J. Nonlinear Sci., 24 (2014), 809.
doi: 10.1007/s00332-014-9205-x. |
[44] |
M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening,, J. Differential Equations, 257 (2014), 1056.
doi: 10.1016/j.jde.2014.04.023. |
[45] |
M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier-Stokes system,, Arch. Ration. Mech. Anal., 211 (2014), 455.
doi: 10.1007/s00205-013-0678-9. |
[46] |
M. Winkler, Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity,, Calc. Var. Partial Differential Equations, 54 (2015), 3789.
doi: 10.1007/s00526-015-0922-2. |
[47] |
M. Winkler and K. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect,, Nonlinear Anal., 72 (2010), 1044.
doi: 10.1016/j.na.2009.07.045. |
show all references
References:
[1] |
N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations,, Comm. Partial Differential Equations, 4 (1979), 827.
doi: 10.1080/03605307908820113. |
[2] |
N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Towards a mathematical theory of Keller-Segel models of pattern formation in biological tissues,, Math. Models Methods Appl. Sci., 25 (2015), 1663.
doi: 10.1142/S021820251550044X. |
[3] |
P. Biler, Existence and nonexistence of solutions for a model of gravitational interaction of particles III,, Colloq. Mathematicum, 68 (1995), 229.
|
[4] |
X. R. Cao, Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces,, Discrete Cont. Dyns. S-A., 35 (2015), 1891.
doi: 10.3934/dcds.2015.35.1891. |
[5] |
X. R. Cao, Boundedness in a three-dimensional chemotaxis-haptotaxis model,, Zeitschrift für angewandte Mathematik und Physik, 67 (2016).
doi: 10.1007/s00033-015-0601-3. |
[6] |
T. Cieślak and P. H. Laurençot, Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system,, Ann. I. H. Poincaré Anal. Non Linéaire, 27 (2010), 437.
doi: 10.1016/j.anihpc.2009.11.016. |
[7] |
T. Cieślak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions,, J. Differential Equations, 252 (2012), 5832.
doi: 10.1016/j.jde.2012.01.045. |
[8] |
T. Cieślak and C. Stinner, New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models,, J. Differential Equations, 258 (2015), 2080.
doi: 10.1016/j.jde.2014.12.004. |
[9] |
T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis,, Nonlinearity, 21 (2008), 1057.
doi: 10.1088/0951-7715/21/5/009. |
[10] |
A. Friedman and J. I. Tello, Stability of solutions of chemotaxis equations in reinforced random walks,, J. Math. Anal. Appl., 272 (2002), 138.
doi: 10.1016/S0022-247X(02)00147-6. |
[11] |
H. Gajewski and K. Zacharias, Global behavior of a reaction-diffusion system modelling chemotaxis,, Math. Nachr., 195 (1998), 77.
doi: 10.1002/mana.19981950106. |
[12] |
M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model,, Ann. Scuola Normale Superiore, 24 (1997), 633.
|
[13] |
D. Horstemann, Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species,, J. Nonlinear Sci., 21 (2011), 231.
doi: 10.1007/s00332-010-9082-x. |
[14] |
D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system,, J. Differential Equations, 215 (2005), 52.
doi: 10.1016/j.jde.2004.10.022. |
[15] |
S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains,, J. Differential Equations, 256 (2014), 2993.
doi: 10.1016/j.jde.2014.01.028. |
[16] |
W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Am. Math. Soc., 329 (1992), 819.
doi: 10.1090/S0002-9947-1992-1046835-6. |
[17] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399.
doi: 10.1016/0022-5193(70)90092-5. |
[18] |
R. Kowalczyk and Z. Szymańska, On the global existence of solutions to an aggregation model,, J. Math. Anal. Appl., 343 (2008), 379.
doi: 10.1016/j.jmaa.2008.01.005. |
[19] |
Y. H. Li, K. Lin and C. L. Mu, Boundedness and asymptotic behavior of solutions to a chemotaxis-haptotaxis model in high dimensions,, Appl. Math. Lett., 50 (2015), 91.
doi: 10.1016/j.aml.2015.06.010. |
[20] |
J. Lankeit, Chemotaxis can prevent thresholds on population density,, Discrete Cont. Dyns. S-B., 20 (2015), 1499.
doi: 10.3934/dcdsb.2015.20.1499. |
[21] |
J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source,, J. Differential Equations, 258 (2015), 1158.
doi: 10.1016/j.jde.2014.10.016. |
[22] |
M. M. Porzio and V. Vespri, Holder estimates for local solutions of some doubly nonlinear degenerate parabolic equations,, J. Differential Equations, 103 (1993), 146.
doi: 10.1006/jdeq.1993.1045. |
[23] |
T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system,, Adv. Math. Sci. Appl., 5 (1995), 581.
|
[24] |
T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains,, J. Inequal. Appl., 6 (2001), 37.
doi: 10.1155/S1025583401000042. |
[25] |
T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis,, Funkc. Ekvacioj. Ser. Int., 40 (1997), 411.
|
[26] |
M. Negreanu and J. I. Tello, On a two species chemotaxis model with slow chemical diffusion,, SIAM J. MAth. Anal., 46 (2014), 3761.
doi: 10.1137/140971853. |
[27] |
M. Negreanu and J. I. Tello, Asymptotic stability of a two species chemotaxis system with non-diffusive chemoattractant,, J. Differential Equations, 258 (2015), 1592.
doi: 10.1016/j.jde.2014.11.009. |
[28] |
K. Osaki, T. Tsujikawa, A. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations,, Nonlinear Anal., 51 (2002), 119.
doi: 10.1016/S0362-546X(01)00815-X. |
[29] |
K. Osaki and A. Yagi, Finite dimensional attractors for one-dimensional Keller-Segel equations,, Funkc. Ekvacioj. Ser. Int., 44 (2001), 441.
|
[30] |
Y. Tao, Boundedness in a two-dimensional chemotaxis-haptotaxis system,, , (). Google Scholar |
[31] |
Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692.
doi: 10.1016/j.jde.2011.08.019. |
[32] |
Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant,, J. Differential Equations, 252 (2012), 2520.
doi: 10.1016/j.jde.2011.07.010. |
[33] |
Y. Tao and M. Winkler, Dominance of chemotaxis in a chemotaxis-haptotaxis model,, Nonlinearity, 27 (2014), 1225.
doi: 10.1088/0951-7715/27/6/1225. |
[34] |
Y. Tao and M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant,, J. Differential Equations, 257 (2014), 784.
doi: 10.1016/j.jde.2014.04.014. |
[35] |
Y. Tao and M. Winkler, Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system,, Z. Angew. Math. Phys., 66 (2015), 2555.
doi: 10.1007/s00033-015-0541-y. |
[36] |
Y. Tao and M. Winkler, Persistence of mass in a chemotaxis system with logistic source,, J. Differential Equations, 259 (2015), 6142.
doi: 10.1016/j.jde.2015.07.019. |
[37] |
J. I. Tello and M. Winkler, A chemotaxis system with logistic source,, Comm. Partial Differential Equations, 32 (2007), 849.
doi: 10.1080/03605300701319003. |
[38] |
M. Winkler, Chemotaxis with logistic source: Very weak global solutions and boundedness properties,, J. Math. Anal Appl, 348 (2008), 708.
doi: 10.1016/j.jmaa.2008.07.071. |
[39] |
M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source,, Comm. Partial Differential Equations, 35 (2010), 1516.
doi: 10.1080/03605300903473426. |
[40] |
M. Winkler, Aggregation versus global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889.
doi: 10.1016/j.jde.2010.02.008. |
[41] |
M. Winkler, Does a volume-filling effect always prevent chemotactic collapse?,, Math. Methods Appl. Sci., 33 (2010), 12.
doi: 10.1002/mma.1146. |
[42] |
M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system,, J. Math. Pures Appl., 100 (2013), 748.
doi: 10.1016/j.matpur.2013.01.020. |
[43] |
M. Winkler, How far can chemotactic cross-diffusion enforce exceeding carrying capacities?,, J. Nonlinear Sci., 24 (2014), 809.
doi: 10.1007/s00332-014-9205-x. |
[44] |
M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening,, J. Differential Equations, 257 (2014), 1056.
doi: 10.1016/j.jde.2014.04.023. |
[45] |
M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier-Stokes system,, Arch. Ration. Mech. Anal., 211 (2014), 455.
doi: 10.1007/s00205-013-0678-9. |
[46] |
M. Winkler, Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity,, Calc. Var. Partial Differential Equations, 54 (2015), 3789.
doi: 10.1007/s00526-015-0922-2. |
[47] |
M. Winkler and K. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect,, Nonlinear Anal., 72 (2010), 1044.
doi: 10.1016/j.na.2009.07.045. |
[1] |
Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194 |
[2] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[3] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[4] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[5] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[6] |
Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186 |
[7] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[8] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[9] |
Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198 |
[10] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[11] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[12] |
Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511 |
[13] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[14] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[15] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[16] |
Akio Matsumot, Ferenc Szidarovszky. Stability Switching and its Directions in Cournot Duopoly Game with Three Delays. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021069 |
[17] |
Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021066 |
[18] |
Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021068 |
[19] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[20] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]