-
Previous Article
Correlation integral and determinism for a family of $2^\infty$ maps
- DCDS Home
- This Issue
-
Next Article
Global dynamics in a fully parabolic chemotaxis system with logistic source
Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions
1. | Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, China |
2. | Department of Mathematics, Zhongshan University, Guangzhou, 510275 |
References:
[1] |
H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Grundlehren der Mathematischen Wissenschaften, (2011).
doi: 10.1007/978-3-642-16830-7. |
[2] |
L. Brandolese, Break down for the Camassa-Holm equation using decay criteria and persistence in weighted spaces,, Int. Math. Res. Not. IMRN, 22 (2012), 5161.
|
[3] |
A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Ration. Mech. Anal., 183 (2007), 215.
doi: 10.1007/s00205-006-0010-z. |
[4] |
A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl., 5 (2007), 1.
doi: 10.1142/S0219530507000857. |
[5] |
R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.
doi: 10.1103/PhysRevLett.71.1661. |
[6] |
R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1.
doi: 10.1016/S0065-2156(08)70254-0. |
[7] |
A. Constantin, The Hamiltonian structure of the Camassa-Holm equation,, Exposition. Math., 15 (1997), 53.
|
[8] |
A. Constantin, On the scattering problem for the Camassa-Holm equation,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 953.
doi: 10.1098/rspa.2000.0701. |
[9] |
A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach,, Ann. Inst. Fourier (Grenoble), 50 (2000), 321.
doi: 10.5802/aif.1757. |
[10] |
A. Constantin, Finite propagation speed for the Camassa-Holm equation,, J. Math. Phys., 46 (2005).
doi: 10.1063/1.1845603. |
[11] |
A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523.
doi: 10.1007/s00222-006-0002-5. |
[12] |
A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 303.
|
[13] |
A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation,, Comm. Pure Appl. Math., 51 (1998), 475.
doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5. |
[14] |
A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229.
doi: 10.1007/BF02392586. |
[15] |
A. Constantin and J. Escher, Particle trajectories in solitary water waves,, Bull. Amer. Math. Soc., 44 (2007), 423.
doi: 10.1090/S0273-0979-07-01159-7. |
[16] |
A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. of Math., 173 (2011), 559.
doi: 10.4007/annals.2011.173.1.12. |
[17] |
A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 192 (2009), 165.
doi: 10.1007/s00205-008-0128-2. |
[18] |
A. Constantin and L. Molinet, Global weak solutions for a shallow water equation,, Comm. Math. Phys., 211 (2000), 45.
doi: 10.1007/s002200050801. |
[19] |
A. Constantin and W. A. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603.
doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L. |
[20] |
A. Constantin and R. Ivanov, On an integrable two-component Camassa-Holm shallow water system,, Phys. Lett. A, 372 (2008), 7129.
doi: 10.1016/j.physleta.2008.10.050. |
[21] |
R. Danchin, A few remarks on the Camassa-Holm equation,, Differential Integral Equations, 14 (2001), 953.
|
[22] |
R. Danchin, A note on well-posedness for Camassa-Holm equation,, J. Differential Equations, 192 (2003), 429.
doi: 10.1016/S0022-0396(03)00096-2. |
[23] |
J. Escher, O. Lechtenfeld and Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation,, Discrete Contin. Dyn. Syst., 19 (2007), 493.
doi: 10.3934/dcds.2007.19.493. |
[24] |
B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries,, Phys. D, 4 (): 47.
doi: 10.1016/0167-2789(81)90004-X. |
[25] |
C. Guan and Z. Yin, Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system,, J. Differential Equations, 248 (2010), 2003.
doi: 10.1016/j.jde.2009.08.002. |
[26] |
C. Guan, K. H. Karlsen and Z. Yin, Well-posedness and blow-up phenomena for a modified two-component Camassa-Holm equation,, Contemp. Math., 526 (2010), 199.
doi: 10.1090/conm/526/10382. |
[27] |
C. Guan and Z. Yin, Global weak solutions for a two-component Camassa- Holm shallow water system,, J. Funct. Anal., 260 (2011), 1132.
doi: 10.1016/j.jfa.2010.11.015. |
[28] |
C. Guan and Z. Yin, Global weak solutions for a modified two-component Camassa-Holm equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 623.
doi: 10.1016/j.anihpc.2011.04.003. |
[29] |
C. Guan, H. He and Z. Yin, Well-posedness, blow-up phenomena and persistence properties for a two-component water wave system,, Nonlinear Anal. Real World Appl., 25 (2015), 219.
doi: 10.1016/j.nonrwa.2015.04.001. |
[30] |
X. G. Geng and B. Xue, A three-component generalization of Camassa-Holm equation with N-peakon solutions,, Adv. Math., 226 (2011), 827.
doi: 10.1016/j.aim.2010.07.009. |
[31] |
G. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system,, J. Funct. Anal., 258 (2010), 4251.
doi: 10.1016/j.jfa.2010.02.008. |
[32] |
D. Henry, Persistence properties for a family of nonlinear partial differential equations,, Nonlinear Anal., 70 (2009), 1565.
doi: 10.1016/j.na.2008.02.104. |
[33] |
D. D. Holm, L. Naraigh and C. Tronci, Singular solution of a modified twocomponent Camassa-Holm equation,, Phys. Rev. E (3), 79 (2009).
doi: 10.1103/PhysRevE.79.016601. |
[34] |
A. Himonas, G. Misiolek, G. Ponce and Y. Zhou, Persistence properties and unique continuation of solutions of the Camassa-Holm equation,, Comm. Math. Phys., 271 (2007), 511.
doi: 10.1007/s00220-006-0172-4. |
[35] |
Y. Liu and Z. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation,, Comm. Math. Phys., 267 (2006), 801.
doi: 10.1007/s00220-006-0082-5. |
[36] |
W. Luo and Z. Yin, Global existence and local well-posedness for a three-component Camassa-Holm system with N-peakon solutions,, J. Differential Equations, 259 (2015), 201.
doi: 10.1016/j.jde.2015.02.005. |
[37] |
G. Rodríguez-Blanco, On the Cauchy problem for the Camassa-Holm equation,, Nonlinear Anal., 46 (2001), 309.
doi: 10.1016/S0362-546X(01)00791-X. |
[38] |
W. Tan and Z. Yin, Global conservative solutions of a modified two-component Camassa-Holm shallow water system,, J. Differential Equations, 251 (2011), 3558.
doi: 10.1016/j.jde.2011.08.010. |
[39] |
W. Tan and Z. Yin, Global dissipative solutions of a modified two-component Camassa-Holm shallow water system,, \emph{J. Math. Phys.}, 52 (2011).
doi: 10.1063/1.3562928. |
[40] |
J. F. Toland, Stokes waves,, Topol. Methods Nonlinear Anal., 7 (1996), 1.
|
[41] |
X. Wu and B. Guo, Persistence properties and infinite propagation for the modified 2-component Camassa-Holm equation,, Discrete Contin. Dyn. Syst., 33 (2013), 3211.
doi: 10.3934/dcds.2013.33.3211. |
[42] |
Z. Xin and P. Zhang, On the weak solutions to a shallow water equation,, Comm. Pure Appl. Math., 53 (2000), 1411.
doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5. |
[43] |
K. Yan and Z. Yin, Well-posedness for a modified two-component Camassa-Holm system in critical spaces,, Discrete Contin. Dyn. Syst., 33 (2013), 1699.
doi: 10.3934/dcds.2013.33.1699. |
show all references
References:
[1] |
H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Grundlehren der Mathematischen Wissenschaften, (2011).
doi: 10.1007/978-3-642-16830-7. |
[2] |
L. Brandolese, Break down for the Camassa-Holm equation using decay criteria and persistence in weighted spaces,, Int. Math. Res. Not. IMRN, 22 (2012), 5161.
|
[3] |
A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Ration. Mech. Anal., 183 (2007), 215.
doi: 10.1007/s00205-006-0010-z. |
[4] |
A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl., 5 (2007), 1.
doi: 10.1142/S0219530507000857. |
[5] |
R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.
doi: 10.1103/PhysRevLett.71.1661. |
[6] |
R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1.
doi: 10.1016/S0065-2156(08)70254-0. |
[7] |
A. Constantin, The Hamiltonian structure of the Camassa-Holm equation,, Exposition. Math., 15 (1997), 53.
|
[8] |
A. Constantin, On the scattering problem for the Camassa-Holm equation,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 953.
doi: 10.1098/rspa.2000.0701. |
[9] |
A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach,, Ann. Inst. Fourier (Grenoble), 50 (2000), 321.
doi: 10.5802/aif.1757. |
[10] |
A. Constantin, Finite propagation speed for the Camassa-Holm equation,, J. Math. Phys., 46 (2005).
doi: 10.1063/1.1845603. |
[11] |
A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523.
doi: 10.1007/s00222-006-0002-5. |
[12] |
A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 303.
|
[13] |
A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation,, Comm. Pure Appl. Math., 51 (1998), 475.
doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5. |
[14] |
A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229.
doi: 10.1007/BF02392586. |
[15] |
A. Constantin and J. Escher, Particle trajectories in solitary water waves,, Bull. Amer. Math. Soc., 44 (2007), 423.
doi: 10.1090/S0273-0979-07-01159-7. |
[16] |
A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. of Math., 173 (2011), 559.
doi: 10.4007/annals.2011.173.1.12. |
[17] |
A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 192 (2009), 165.
doi: 10.1007/s00205-008-0128-2. |
[18] |
A. Constantin and L. Molinet, Global weak solutions for a shallow water equation,, Comm. Math. Phys., 211 (2000), 45.
doi: 10.1007/s002200050801. |
[19] |
A. Constantin and W. A. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603.
doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L. |
[20] |
A. Constantin and R. Ivanov, On an integrable two-component Camassa-Holm shallow water system,, Phys. Lett. A, 372 (2008), 7129.
doi: 10.1016/j.physleta.2008.10.050. |
[21] |
R. Danchin, A few remarks on the Camassa-Holm equation,, Differential Integral Equations, 14 (2001), 953.
|
[22] |
R. Danchin, A note on well-posedness for Camassa-Holm equation,, J. Differential Equations, 192 (2003), 429.
doi: 10.1016/S0022-0396(03)00096-2. |
[23] |
J. Escher, O. Lechtenfeld and Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation,, Discrete Contin. Dyn. Syst., 19 (2007), 493.
doi: 10.3934/dcds.2007.19.493. |
[24] |
B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries,, Phys. D, 4 (): 47.
doi: 10.1016/0167-2789(81)90004-X. |
[25] |
C. Guan and Z. Yin, Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system,, J. Differential Equations, 248 (2010), 2003.
doi: 10.1016/j.jde.2009.08.002. |
[26] |
C. Guan, K. H. Karlsen and Z. Yin, Well-posedness and blow-up phenomena for a modified two-component Camassa-Holm equation,, Contemp. Math., 526 (2010), 199.
doi: 10.1090/conm/526/10382. |
[27] |
C. Guan and Z. Yin, Global weak solutions for a two-component Camassa- Holm shallow water system,, J. Funct. Anal., 260 (2011), 1132.
doi: 10.1016/j.jfa.2010.11.015. |
[28] |
C. Guan and Z. Yin, Global weak solutions for a modified two-component Camassa-Holm equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 623.
doi: 10.1016/j.anihpc.2011.04.003. |
[29] |
C. Guan, H. He and Z. Yin, Well-posedness, blow-up phenomena and persistence properties for a two-component water wave system,, Nonlinear Anal. Real World Appl., 25 (2015), 219.
doi: 10.1016/j.nonrwa.2015.04.001. |
[30] |
X. G. Geng and B. Xue, A three-component generalization of Camassa-Holm equation with N-peakon solutions,, Adv. Math., 226 (2011), 827.
doi: 10.1016/j.aim.2010.07.009. |
[31] |
G. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system,, J. Funct. Anal., 258 (2010), 4251.
doi: 10.1016/j.jfa.2010.02.008. |
[32] |
D. Henry, Persistence properties for a family of nonlinear partial differential equations,, Nonlinear Anal., 70 (2009), 1565.
doi: 10.1016/j.na.2008.02.104. |
[33] |
D. D. Holm, L. Naraigh and C. Tronci, Singular solution of a modified twocomponent Camassa-Holm equation,, Phys. Rev. E (3), 79 (2009).
doi: 10.1103/PhysRevE.79.016601. |
[34] |
A. Himonas, G. Misiolek, G. Ponce and Y. Zhou, Persistence properties and unique continuation of solutions of the Camassa-Holm equation,, Comm. Math. Phys., 271 (2007), 511.
doi: 10.1007/s00220-006-0172-4. |
[35] |
Y. Liu and Z. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation,, Comm. Math. Phys., 267 (2006), 801.
doi: 10.1007/s00220-006-0082-5. |
[36] |
W. Luo and Z. Yin, Global existence and local well-posedness for a three-component Camassa-Holm system with N-peakon solutions,, J. Differential Equations, 259 (2015), 201.
doi: 10.1016/j.jde.2015.02.005. |
[37] |
G. Rodríguez-Blanco, On the Cauchy problem for the Camassa-Holm equation,, Nonlinear Anal., 46 (2001), 309.
doi: 10.1016/S0362-546X(01)00791-X. |
[38] |
W. Tan and Z. Yin, Global conservative solutions of a modified two-component Camassa-Holm shallow water system,, J. Differential Equations, 251 (2011), 3558.
doi: 10.1016/j.jde.2011.08.010. |
[39] |
W. Tan and Z. Yin, Global dissipative solutions of a modified two-component Camassa-Holm shallow water system,, \emph{J. Math. Phys.}, 52 (2011).
doi: 10.1063/1.3562928. |
[40] |
J. F. Toland, Stokes waves,, Topol. Methods Nonlinear Anal., 7 (1996), 1.
|
[41] |
X. Wu and B. Guo, Persistence properties and infinite propagation for the modified 2-component Camassa-Holm equation,, Discrete Contin. Dyn. Syst., 33 (2013), 3211.
doi: 10.3934/dcds.2013.33.3211. |
[42] |
Z. Xin and P. Zhang, On the weak solutions to a shallow water equation,, Comm. Pure Appl. Math., 53 (2000), 1411.
doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5. |
[43] |
K. Yan and Z. Yin, Well-posedness for a modified two-component Camassa-Holm system in critical spaces,, Discrete Contin. Dyn. Syst., 33 (2013), 1699.
doi: 10.3934/dcds.2013.33.1699. |
[1] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[2] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[3] |
Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030 |
[4] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[5] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[6] |
M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202 |
[7] |
Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61 |
[8] |
Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294 |
[9] |
Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115 |
[10] |
Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053 |
[11] |
Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391 |
[12] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
[13] |
Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003 |
[14] |
A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121. |
[15] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[16] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[17] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027 |
[18] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[19] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[20] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]