• Previous Article
    Dimension reduction for rotating Bose-Einstein condensates with anisotropic confinement
  • DCDS Home
  • This Issue
  • Next Article
    Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions
September  2016, 36(9): 5067-5096. doi: 10.3934/dcds.2016020

Correlation integral and determinism for a family of $2^\infty$ maps

1. 

Slovanet a.s., Záhradnícka 151, 821 08 Bratislava, Slovak Republic

Received  June 2015 Revised  March 2016 Published  May 2016

The correlation integral and determinism are quantitative characteristics of a dynamical system based on the recurrence of orbits. For strongly non-chaotic interval maps, the determinism equals $1$ for every small enough threshold. This means that trajectories of such systems are perfectly predictable in the infinite horizon. In this paper we study the correlation integral and determinism for the family of $2^\infty$ non-chaotic maps, first considered by Delahaye in 1980. The determinism in a finite horizon equals $1$. However, the behaviour of the determinism in the infinite horizon is counter-intuitive. Sharp bounds on the determinism are provided.
Citation: Jana Majerová. Correlation integral and determinism for a family of $2^\infty$ maps. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5067-5096. doi: 10.3934/dcds.2016020
References:
[1]

L. S. Block and W. A. Coppel, Dynamics in One Dimension,, Springer-Verlag, (1992).   Google Scholar

[2]

L. S. Block and J. Keesling, A characterization of adding machine maps,, Topology Appl., 140 (2004), 151.  doi: 10.1016/j.topol.2003.07.006.  Google Scholar

[3]

J. P. Boroński and P. Oprocha, On indecomposability in chaotic attractors,, Proc. Amer. Math. Soc., 143 (2015), 3659.  doi: 10.1090/S0002-9939-2015-12526-9.  Google Scholar

[4]

P. Collas and D. Klein, An ergodic adding machine on the Cantor set,, Enseign. Math. (2), 40 (1994), 249.   Google Scholar

[5]

J.-P. Delahaye, Fonctions admettant des cycles d'ordre n'importe quelle puissance de $2$ et aucun autre cycle,, C. R. Acad. Sci. Paris Sér. A-B, 291 (1980).   Google Scholar

[6]

R. L. Devaney, An Introduction to Chaotic Dynamical Systems,, $2^{nd}$ edition, (1989).   Google Scholar

[7]

M. Grendár, J. Majerová and V. Špitalský, Strong laws for recurrence quantification analysis,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013).  doi: 10.1142/S0218127413501472.  Google Scholar

[8]

P. Grassberger and I. Procaccia, Measuring the strangeness of strange attractors,, Phys. D, 9 (1983), 189.  doi: 10.1016/0167-2789(83)90298-1.  Google Scholar

[9]

R. Hric, Topological sequence entropy for maps of the interval,, Proc. Amer. Math. Soc., 127 (1999), 2045.  doi: 10.1090/S0002-9939-99-04799-1.  Google Scholar

[10]

H. Kantz and T. Schreiber, Nonlinear Time Series Analysis,, $2^{nd}$ edition, (2004).   Google Scholar

[11]

M. Misiurewicz, Invariant measures for continuous transformations of $[0,1]$ with zero topological entropy,, in Ergodic theory (Proc. Conf., 729 (1979), 144.   Google Scholar

[12]

A. Manning and K. Simon, A short existence proof for correlation dimension,, J. Statist. Phys., 90 (1998), 1047.  doi: 10.1023/A:1023253709865.  Google Scholar

[13]

Ya. B. Pesin, On rigorous mathematical definitions of correlation dimension and generalized spectrum for dimensions,, J. Statist. Phys., 71 (1993), 529.  doi: 10.1007/BF01058436.  Google Scholar

[14]

Ya. B. Pesin and A. Tempelman, Correlation dimension of measures invariant under group actions,, Random Comput. Dynam., 3 (1995), 137.   Google Scholar

[15]

S. Ruette, Chaos for continuous interval maps,, 2003. Available from: , ().   Google Scholar

[16]

J. Smítal, Chaotic functions with zero topological entropy,, Trans. Amer. Math. Soc., 297 (1986), 269.  doi: 10.1090/S0002-9947-1986-0849479-9.  Google Scholar

[17]

J. P. Zbilut and C. L. Webber Jr., Embeddings and delays as derived from quantification of recurrence plots,, Physics Letters A, 171 (1992), 199.  doi: 10.1016/0375-9601(92)90426-M.  Google Scholar

show all references

References:
[1]

L. S. Block and W. A. Coppel, Dynamics in One Dimension,, Springer-Verlag, (1992).   Google Scholar

[2]

L. S. Block and J. Keesling, A characterization of adding machine maps,, Topology Appl., 140 (2004), 151.  doi: 10.1016/j.topol.2003.07.006.  Google Scholar

[3]

J. P. Boroński and P. Oprocha, On indecomposability in chaotic attractors,, Proc. Amer. Math. Soc., 143 (2015), 3659.  doi: 10.1090/S0002-9939-2015-12526-9.  Google Scholar

[4]

P. Collas and D. Klein, An ergodic adding machine on the Cantor set,, Enseign. Math. (2), 40 (1994), 249.   Google Scholar

[5]

J.-P. Delahaye, Fonctions admettant des cycles d'ordre n'importe quelle puissance de $2$ et aucun autre cycle,, C. R. Acad. Sci. Paris Sér. A-B, 291 (1980).   Google Scholar

[6]

R. L. Devaney, An Introduction to Chaotic Dynamical Systems,, $2^{nd}$ edition, (1989).   Google Scholar

[7]

M. Grendár, J. Majerová and V. Špitalský, Strong laws for recurrence quantification analysis,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013).  doi: 10.1142/S0218127413501472.  Google Scholar

[8]

P. Grassberger and I. Procaccia, Measuring the strangeness of strange attractors,, Phys. D, 9 (1983), 189.  doi: 10.1016/0167-2789(83)90298-1.  Google Scholar

[9]

R. Hric, Topological sequence entropy for maps of the interval,, Proc. Amer. Math. Soc., 127 (1999), 2045.  doi: 10.1090/S0002-9939-99-04799-1.  Google Scholar

[10]

H. Kantz and T. Schreiber, Nonlinear Time Series Analysis,, $2^{nd}$ edition, (2004).   Google Scholar

[11]

M. Misiurewicz, Invariant measures for continuous transformations of $[0,1]$ with zero topological entropy,, in Ergodic theory (Proc. Conf., 729 (1979), 144.   Google Scholar

[12]

A. Manning and K. Simon, A short existence proof for correlation dimension,, J. Statist. Phys., 90 (1998), 1047.  doi: 10.1023/A:1023253709865.  Google Scholar

[13]

Ya. B. Pesin, On rigorous mathematical definitions of correlation dimension and generalized spectrum for dimensions,, J. Statist. Phys., 71 (1993), 529.  doi: 10.1007/BF01058436.  Google Scholar

[14]

Ya. B. Pesin and A. Tempelman, Correlation dimension of measures invariant under group actions,, Random Comput. Dynam., 3 (1995), 137.   Google Scholar

[15]

S. Ruette, Chaos for continuous interval maps,, 2003. Available from: , ().   Google Scholar

[16]

J. Smítal, Chaotic functions with zero topological entropy,, Trans. Amer. Math. Soc., 297 (1986), 269.  doi: 10.1090/S0002-9947-1986-0849479-9.  Google Scholar

[17]

J. P. Zbilut and C. L. Webber Jr., Embeddings and delays as derived from quantification of recurrence plots,, Physics Letters A, 171 (1992), 199.  doi: 10.1016/0375-9601(92)90426-M.  Google Scholar

[1]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[2]

Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067

[3]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[4]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[5]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[6]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[7]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[8]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[9]

Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511

[10]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[11]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[12]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[13]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[14]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[15]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]