-
Previous Article
A new class of 3-dimensional piecewise affine systems with homoclinic orbits
- DCDS Home
- This Issue
-
Next Article
Correlation integral and determinism for a family of $2^\infty$ maps
Dimension reduction for rotating Bose-Einstein condensates with anisotropic confinement
1. | IRMAR, Université de Rennes 1 and IPSO, INRIA Rennes, 35042 Rennes Cedex |
2. | Department of Mathematics, Statistics, and Computer Science, University of Illinois, Chicago, 851 South Morgan Street, Chicago, Illinois 60607 |
References:
[1] |
P. Antonelli, R. Carles and J. D. Silva, Scattering for nonlinear Schrödinger equation under partial harmonic confinement,, Commun. Math. Phys., 334 (2015), 367.
doi: 10.1007/s00220-014-2166-y. |
[2] |
P. Antonelli, D. Marahrens and C. Sparber, On the Cauchy problem for nonlinear Schrödinger equations with rotation,, Discrete Contin. Dyn. Syst., 32 (2012), 703.
doi: 10.3934/dcds.2012.32.703. |
[3] |
W. Bao, N. Ben Abdallah and Y. Cai, Gross-Pitaevskii-Poisson equations for dipolar Bose-Einstein condensate with anisotropic confinement,, SIAM J. Math. Anal., 44 (2012), 1713.
doi: 10.1137/110850451. |
[4] |
W. Bao, P. A. Markowich, C. Schmeiser and R. M. Weishäupl, On the Gross-Pitaevskii equation with strongly anisotropic confinement: Formal asymptotics and numerical experiments,, Math. Models Meth. Appl. Sci., 15 (2005), 767.
doi: 10.1142/S0218202505000534. |
[5] |
N. Ben Abdallah, Y. Cai, F. Castella and F. Méhats, Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential,, Kinet. Relat. Models, 4 (2011), 831.
doi: 10.3934/krm.2011.4.831. |
[6] |
N. Ben Abdallah, F. Castella and F. Méhats, Time averaging for the strongly confined nonlinear Schrödinger equation, using almost-periodicity,, J. Differential Equ., 245 (2008), 154.
doi: 10.1016/j.jde.2008.02.002. |
[7] |
N. Ben Abdallah, F. Méhats, C. Schmeiser and R. M. Weishäupl, The nonlinear Schrödinger equation with a strongly anisotropic harmonic potential,, SIAM J. Math. Anal., 37 (2005), 189.
doi: 10.1137/040614554. |
[8] |
R. Carles, Global existence results for nonlinear Schrödinger equations with quadratic potentials., Discrete Contin. Dyn. Syst., 13 (2005), 385.
doi: 10.3934/dcds.2005.13.385. |
[9] |
R. Carles, Nonlinear Schrödinger equations with repulsive harmonic potential and applications,, SIAM J. Math. Anal., 35 (2003), 823.
doi: 10.1137/S0036141002416936. |
[10] |
T. Cazenave, Semilinear Schrödinger Equations,, Courant Lecture Notes in Mathematics, (2003).
|
[11] |
F. Delebecque-Fendt and F. Méhats, An effective mass theorem for the bidimensional electron gas in a strong magnetic field,, Comm. Math. Phys., 292 (2009), 829.
doi: 10.1007/s00220-009-0868-3. |
[12] |
S. Flügge, Practical Quantum Mechanics,, Classics in Mathematics, (1999).
|
[13] |
G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities,, Cambridge University Press, (1988).
|
[14] |
B. Helffer, Théorie Spectrale Pour Des Opérateurs Globalement Elliptiques,, Société mathématique de France, (1984).
|
[15] |
H. Kitada, On a construction of the fundamental solution for Schrödinger equations,, J. Fac. Sci. Univ. Tokyo Sec. IA, 27 (1980), 193.
|
[16] |
E. H. Lieb, R. Seiringer, J. P. Solovej and J. Yngvason, The Mathematics of the Bose Gas and its Condensation,, Oberwolfach Seminars, (2005).
|
[17] |
E. Lieb and R. Seiringer, Derivation of the Gross-Pitaevskii equation for rotating Bose gases,, Comm. Math. Phys., 264 (2006), 505.
doi: 10.1007/s00220-006-1524-9. |
[18] |
C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases,, Cambridge University Press, (2002). Google Scholar |
[19] |
L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation,, Clarendon Press, (2003).
|
[20] |
N. Tzvetkov and N. Visciglia, Small data scattering for the nonlinear Schrödinger equation on product spaces,, Commun. Partial Differ. Equ., 37 (2012), 125.
doi: 10.1080/03605302.2011.574306. |
show all references
References:
[1] |
P. Antonelli, R. Carles and J. D. Silva, Scattering for nonlinear Schrödinger equation under partial harmonic confinement,, Commun. Math. Phys., 334 (2015), 367.
doi: 10.1007/s00220-014-2166-y. |
[2] |
P. Antonelli, D. Marahrens and C. Sparber, On the Cauchy problem for nonlinear Schrödinger equations with rotation,, Discrete Contin. Dyn. Syst., 32 (2012), 703.
doi: 10.3934/dcds.2012.32.703. |
[3] |
W. Bao, N. Ben Abdallah and Y. Cai, Gross-Pitaevskii-Poisson equations for dipolar Bose-Einstein condensate with anisotropic confinement,, SIAM J. Math. Anal., 44 (2012), 1713.
doi: 10.1137/110850451. |
[4] |
W. Bao, P. A. Markowich, C. Schmeiser and R. M. Weishäupl, On the Gross-Pitaevskii equation with strongly anisotropic confinement: Formal asymptotics and numerical experiments,, Math. Models Meth. Appl. Sci., 15 (2005), 767.
doi: 10.1142/S0218202505000534. |
[5] |
N. Ben Abdallah, Y. Cai, F. Castella and F. Méhats, Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential,, Kinet. Relat. Models, 4 (2011), 831.
doi: 10.3934/krm.2011.4.831. |
[6] |
N. Ben Abdallah, F. Castella and F. Méhats, Time averaging for the strongly confined nonlinear Schrödinger equation, using almost-periodicity,, J. Differential Equ., 245 (2008), 154.
doi: 10.1016/j.jde.2008.02.002. |
[7] |
N. Ben Abdallah, F. Méhats, C. Schmeiser and R. M. Weishäupl, The nonlinear Schrödinger equation with a strongly anisotropic harmonic potential,, SIAM J. Math. Anal., 37 (2005), 189.
doi: 10.1137/040614554. |
[8] |
R. Carles, Global existence results for nonlinear Schrödinger equations with quadratic potentials., Discrete Contin. Dyn. Syst., 13 (2005), 385.
doi: 10.3934/dcds.2005.13.385. |
[9] |
R. Carles, Nonlinear Schrödinger equations with repulsive harmonic potential and applications,, SIAM J. Math. Anal., 35 (2003), 823.
doi: 10.1137/S0036141002416936. |
[10] |
T. Cazenave, Semilinear Schrödinger Equations,, Courant Lecture Notes in Mathematics, (2003).
|
[11] |
F. Delebecque-Fendt and F. Méhats, An effective mass theorem for the bidimensional electron gas in a strong magnetic field,, Comm. Math. Phys., 292 (2009), 829.
doi: 10.1007/s00220-009-0868-3. |
[12] |
S. Flügge, Practical Quantum Mechanics,, Classics in Mathematics, (1999).
|
[13] |
G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities,, Cambridge University Press, (1988).
|
[14] |
B. Helffer, Théorie Spectrale Pour Des Opérateurs Globalement Elliptiques,, Société mathématique de France, (1984).
|
[15] |
H. Kitada, On a construction of the fundamental solution for Schrödinger equations,, J. Fac. Sci. Univ. Tokyo Sec. IA, 27 (1980), 193.
|
[16] |
E. H. Lieb, R. Seiringer, J. P. Solovej and J. Yngvason, The Mathematics of the Bose Gas and its Condensation,, Oberwolfach Seminars, (2005).
|
[17] |
E. Lieb and R. Seiringer, Derivation of the Gross-Pitaevskii equation for rotating Bose gases,, Comm. Math. Phys., 264 (2006), 505.
doi: 10.1007/s00220-006-1524-9. |
[18] |
C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases,, Cambridge University Press, (2002). Google Scholar |
[19] |
L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation,, Clarendon Press, (2003).
|
[20] |
N. Tzvetkov and N. Visciglia, Small data scattering for the nonlinear Schrödinger equation on product spaces,, Commun. Partial Differ. Equ., 37 (2012), 125.
doi: 10.1080/03605302.2011.574306. |
[1] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[2] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[3] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
[4] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[5] |
Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021017 |
[6] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021020 |
[7] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[8] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[9] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[10] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[11] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[12] |
Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186 |
[13] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[14] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[15] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 |
[16] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454 |
[17] |
Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025 |
[18] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[19] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[20] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]