September  2016, 36(9): 5119-5129. doi: 10.3934/dcds.2016022

A new class of 3-dimensional piecewise affine systems with homoclinic orbits

1. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, 430074, China, China

Received  July 2015 Revised  December 2015 Published  May 2016

Based on mathematical analysis, this paper proves the existence of homoclinic orbits in a new class of 3-dimensional piecewise affine systems, and gives an example to illustrate the effectiveness of the method.
Citation: Tiantian Wu, Xiao-Song Yang. A new class of 3-dimensional piecewise affine systems with homoclinic orbits. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5119-5129. doi: 10.3934/dcds.2016022
References:
[1]

G. F. V. Amaral, C. Letellier and L. A. Aguirre, Piecewise affine models of chaotic attractors: The Rossler and Lorenz systems,, Chaos, 16 (2006).  doi: 10.1063/1.2149527.  Google Scholar

[2]

M. L. Barakat, A. S. Mansingka, A. G. Radwan and K. N. Salama, Hardware stream cipher with controllable chaos generator for colour image encryption,, IET Image Process., 8 (2014), 33.  doi: 10.1049/iet-ipr.2012.0586.  Google Scholar

[3]

S. Chakraborty and S. K. Dana, Shil'nikov chaos and mixed-mode oscillation in Chua's circuit,, Chaos, 20 (2010).   Google Scholar

[4]

T. Chien and T. Liao, Design of secure digital communication systems using chaotic modulation, cryptography and chaotic synchronization,, Chaos Solitons Fract., 24 (2005), 241.  doi: 10.1016/S0960-0779(04)00542-9.  Google Scholar

[5]

V. Carmona, F. Fernández-Sánchez and A. E. Teruel, Existence of a reversible T-point heteroclinic cycle in a piecewise linear version of the Michelson system,, SIAM J. Appl. Dyn. Syst., 7 (2008), 1032.  doi: 10.1137/070709542.  Google Scholar

[6]

V. Carmona, F. Fernández-Sánchez, E. García-Medina and A. E. Teruel, Existence of homoclinic connections in continuous piecewise linear systems,, Chaos, 20 (2010).  doi: 10.1063/1.3339819.  Google Scholar

[7]

M. di Bernardo and C. K. Tse, Chaos in Power Electronics: An Overview, Chaos in Circuits and Systems,, World Scientific, (2002).   Google Scholar

[8]

S. M. Huan, Q. D. Li and X.-S. Yang, Chaos in three-dimensional hybrid systems and design of chaos generators,, Nonlinear Dyn., 69 (2012), 1915.  doi: 10.1007/s11071-012-0396-0.  Google Scholar

[9]

S. M. Huan and X.-S. Yang, Existence of chaotic invariant set in a class of 4-dimensional piecewise linear dynamical systems,, Int. J. Bifurc. Chaos, 24 (2014).  doi: 10.1142/S0218127414501582.  Google Scholar

[10]

T. Kousaka, T. Ueta and H. Kawakami, Chaos in a simple hybrid system and its control,, Electron Lett., 37 (2001).  doi: 10.1049/el:20010033.  Google Scholar

[11]

J. Lü, T. Zhou, G. Chen and X.-S. Yang, Generating chaos with a switching piecewise-linear controller,, Chaos, 12 (2002), 344.   Google Scholar

[12]

R. O. Medrano-T., M. S. Baptista and I. L. Caldas, Homoclinic orbits in a piecewise system and their relation with invariant sets,, Physica D, 186 (2003), 133.  doi: 10.1016/j.physd.2003.08.002.  Google Scholar

[13]

V. Nair and R. I. Sujith, Identifying homoclinic orbits in the dynamics of intermittent signals through recurrence quantification,, Chaos, 23 (2013).  doi: 10.1063/1.4821475.  Google Scholar

[14]

I. Pehlivan and Y. Uyaroglu, Simplified chaotic diffusionless Lorenz attractor and its application to secure communication systems,, IET Commun., 1 (2007), 1015.   Google Scholar

[15]

L. P. Shil'nikov, A case of the existence of a countable number of periodic motions,, Sov. Math.Dokl., 6 (1965), 163.   Google Scholar

[16]

L. P. Shil'nikov, A contribution of the problem of the structure of an extended neighborhood of rough equilibrium state of saddle-focus type,, Math. USSR Sb., 10 (1970), 91.   Google Scholar

[17]

L. P. Shil'nikov, A. Shil'nikov, D. Turaev and L. Chua, Methods of Qualitative theory in Nonlinear Dynamics,, Part I, (1998).  doi: 10.1142/9789812798596.  Google Scholar

[18]

L. P. Shil'nikov, A. Shil'nikov, D. Turaev and L. Chua, Methods of Qualitative Theory in Nonlinear Dynamics,, Part II, (2001).  doi: 10.1142/9789812798558_0001.  Google Scholar

[19]

C. Tresser, About some theorems by L. P. Shil'nikov,, Inst. H. Poincare Phys. Thoré., 40 (1984), 441.   Google Scholar

[20]

K. Watada, T. Endo and H. Seishi, Shilnikov orbits in an autonomous third-order chaotic phase-locked loop,, IEEE Trans. Circuits Syst., 45 (1998), 979.   Google Scholar

[21]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos,, $2^{nd}$ edition, (2003).   Google Scholar

[22]

D. Wilczak, The existence of Shilnikov homoclinic orbits in the Michelson system: A computer assisted proof,, Found Comput. Math., 6 (2006), 495.  doi: 10.1007/s10208-005-0201-2.  Google Scholar

[23]

X.-S. Yang and Q. D. Li, Chaos generator via Wien-bridge oscillator,, Electron. Lett., 38 (2002), 623.  doi: 10.1049/el:20020456.  Google Scholar

[24]

X.-S. Yang and Q. D. Li, Generate n-scroll attractor in linear system by scalar output feedback,, Chaos Solitons Fract., 18 (2003), 25.  doi: 10.1016/S0960-0779(02)00638-0.  Google Scholar

show all references

References:
[1]

G. F. V. Amaral, C. Letellier and L. A. Aguirre, Piecewise affine models of chaotic attractors: The Rossler and Lorenz systems,, Chaos, 16 (2006).  doi: 10.1063/1.2149527.  Google Scholar

[2]

M. L. Barakat, A. S. Mansingka, A. G. Radwan and K. N. Salama, Hardware stream cipher with controllable chaos generator for colour image encryption,, IET Image Process., 8 (2014), 33.  doi: 10.1049/iet-ipr.2012.0586.  Google Scholar

[3]

S. Chakraborty and S. K. Dana, Shil'nikov chaos and mixed-mode oscillation in Chua's circuit,, Chaos, 20 (2010).   Google Scholar

[4]

T. Chien and T. Liao, Design of secure digital communication systems using chaotic modulation, cryptography and chaotic synchronization,, Chaos Solitons Fract., 24 (2005), 241.  doi: 10.1016/S0960-0779(04)00542-9.  Google Scholar

[5]

V. Carmona, F. Fernández-Sánchez and A. E. Teruel, Existence of a reversible T-point heteroclinic cycle in a piecewise linear version of the Michelson system,, SIAM J. Appl. Dyn. Syst., 7 (2008), 1032.  doi: 10.1137/070709542.  Google Scholar

[6]

V. Carmona, F. Fernández-Sánchez, E. García-Medina and A. E. Teruel, Existence of homoclinic connections in continuous piecewise linear systems,, Chaos, 20 (2010).  doi: 10.1063/1.3339819.  Google Scholar

[7]

M. di Bernardo and C. K. Tse, Chaos in Power Electronics: An Overview, Chaos in Circuits and Systems,, World Scientific, (2002).   Google Scholar

[8]

S. M. Huan, Q. D. Li and X.-S. Yang, Chaos in three-dimensional hybrid systems and design of chaos generators,, Nonlinear Dyn., 69 (2012), 1915.  doi: 10.1007/s11071-012-0396-0.  Google Scholar

[9]

S. M. Huan and X.-S. Yang, Existence of chaotic invariant set in a class of 4-dimensional piecewise linear dynamical systems,, Int. J. Bifurc. Chaos, 24 (2014).  doi: 10.1142/S0218127414501582.  Google Scholar

[10]

T. Kousaka, T. Ueta and H. Kawakami, Chaos in a simple hybrid system and its control,, Electron Lett., 37 (2001).  doi: 10.1049/el:20010033.  Google Scholar

[11]

J. Lü, T. Zhou, G. Chen and X.-S. Yang, Generating chaos with a switching piecewise-linear controller,, Chaos, 12 (2002), 344.   Google Scholar

[12]

R. O. Medrano-T., M. S. Baptista and I. L. Caldas, Homoclinic orbits in a piecewise system and their relation with invariant sets,, Physica D, 186 (2003), 133.  doi: 10.1016/j.physd.2003.08.002.  Google Scholar

[13]

V. Nair and R. I. Sujith, Identifying homoclinic orbits in the dynamics of intermittent signals through recurrence quantification,, Chaos, 23 (2013).  doi: 10.1063/1.4821475.  Google Scholar

[14]

I. Pehlivan and Y. Uyaroglu, Simplified chaotic diffusionless Lorenz attractor and its application to secure communication systems,, IET Commun., 1 (2007), 1015.   Google Scholar

[15]

L. P. Shil'nikov, A case of the existence of a countable number of periodic motions,, Sov. Math.Dokl., 6 (1965), 163.   Google Scholar

[16]

L. P. Shil'nikov, A contribution of the problem of the structure of an extended neighborhood of rough equilibrium state of saddle-focus type,, Math. USSR Sb., 10 (1970), 91.   Google Scholar

[17]

L. P. Shil'nikov, A. Shil'nikov, D. Turaev and L. Chua, Methods of Qualitative theory in Nonlinear Dynamics,, Part I, (1998).  doi: 10.1142/9789812798596.  Google Scholar

[18]

L. P. Shil'nikov, A. Shil'nikov, D. Turaev and L. Chua, Methods of Qualitative Theory in Nonlinear Dynamics,, Part II, (2001).  doi: 10.1142/9789812798558_0001.  Google Scholar

[19]

C. Tresser, About some theorems by L. P. Shil'nikov,, Inst. H. Poincare Phys. Thoré., 40 (1984), 441.   Google Scholar

[20]

K. Watada, T. Endo and H. Seishi, Shilnikov orbits in an autonomous third-order chaotic phase-locked loop,, IEEE Trans. Circuits Syst., 45 (1998), 979.   Google Scholar

[21]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos,, $2^{nd}$ edition, (2003).   Google Scholar

[22]

D. Wilczak, The existence of Shilnikov homoclinic orbits in the Michelson system: A computer assisted proof,, Found Comput. Math., 6 (2006), 495.  doi: 10.1007/s10208-005-0201-2.  Google Scholar

[23]

X.-S. Yang and Q. D. Li, Chaos generator via Wien-bridge oscillator,, Electron. Lett., 38 (2002), 623.  doi: 10.1049/el:20020456.  Google Scholar

[24]

X.-S. Yang and Q. D. Li, Generate n-scroll attractor in linear system by scalar output feedback,, Chaos Solitons Fract., 18 (2003), 25.  doi: 10.1016/S0960-0779(02)00638-0.  Google Scholar

[1]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[2]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[3]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[4]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[5]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

[6]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[7]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[8]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[9]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[10]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[11]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[12]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[13]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[14]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[15]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[16]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[17]

Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021004

[18]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[19]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[20]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (71)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]