Citation: |
[1] |
G. F. V. Amaral, C. Letellier and L. A. Aguirre, Piecewise affine models of chaotic attractors: The Rossler and Lorenz systems, Chaos, 16 (2006), 013115, 14pp.doi: 10.1063/1.2149527. |
[2] |
M. L. Barakat, A. S. Mansingka, A. G. Radwan and K. N. Salama, Hardware stream cipher with controllable chaos generator for colour image encryption, IET Image Process., 8 (2014), 33-43.doi: 10.1049/iet-ipr.2012.0586. |
[3] |
S. Chakraborty and S. K. Dana, Shil'nikov chaos and mixed-mode oscillation in Chua's circuit, Chaos, 20 (2010), 23107, 7pp. |
[4] |
T. Chien and T. Liao, Design of secure digital communication systems using chaotic modulation, cryptography and chaotic synchronization, Chaos Solitons Fract., 24 (2005), 241-255.doi: 10.1016/S0960-0779(04)00542-9. |
[5] |
V. Carmona, F. Fernández-Sánchez and A. E. Teruel, Existence of a reversible T-point heteroclinic cycle in a piecewise linear version of the Michelson system, SIAM J. Appl. Dyn. Syst., 7 (2008), 1032-1048.doi: 10.1137/070709542. |
[6] |
V. Carmona, F. Fernández-Sánchez, E. García-Medina and A. E. Teruel, Existence of homoclinic connections in continuous piecewise linear systems, Chaos, 20 (2010), 013124, 8pp.doi: 10.1063/1.3339819. |
[7] |
M. di Bernardo and C. K. Tse, Chaos in Power Electronics: An Overview, Chaos in Circuits and Systems, World Scientific, 2002. |
[8] |
S. M. Huan, Q. D. Li and X.-S. Yang, Chaos in three-dimensional hybrid systems and design of chaos generators, Nonlinear Dyn., 69 (2012), 1915-1927.doi: 10.1007/s11071-012-0396-0. |
[9] |
S. M. Huan and X.-S. Yang, Existence of chaotic invariant set in a class of 4-dimensional piecewise linear dynamical systems, Int. J. Bifurc. Chaos, 24 (2014), 1450158, 16pp.doi: 10.1142/S0218127414501582. |
[10] |
T. Kousaka, T. Ueta and H. Kawakami, Chaos in a simple hybrid system and its control, Electron Lett., 37 (2001), p1.doi: 10.1049/el:20010033. |
[11] |
J. Lü, T. Zhou, G. Chen and X.-S. Yang, Generating chaos with a switching piecewise-linear controller, Chaos, 12 (2002), 344-349. |
[12] |
R. O. Medrano-T., M. S. Baptista and I. L. Caldas, Homoclinic orbits in a piecewise system and their relation with invariant sets, Physica D, 186 (2003), 133-147.doi: 10.1016/j.physd.2003.08.002. |
[13] |
V. Nair and R. I. Sujith, Identifying homoclinic orbits in the dynamics of intermittent signals through recurrence quantification, Chaos, 23 (2013), 033136, 6pp.doi: 10.1063/1.4821475. |
[14] |
I. Pehlivan and Y. Uyaroglu, Simplified chaotic diffusionless Lorenz attractor and its application to secure communication systems, IET Commun., 1 (2007), 1015-1022. |
[15] |
L. P. Shil'nikov, A case of the existence of a countable number of periodic motions, Sov. Math.Dokl., 6 (1965), 163-166. |
[16] |
L. P. Shil'nikov, A contribution of the problem of the structure of an extended neighborhood of rough equilibrium state of saddle-focus type, Math. USSR Sb., 10 (1970), 91-102. |
[17] |
L. P. Shil'nikov, A. Shil'nikov, D. Turaev and L. Chua, Methods of Qualitative theory in Nonlinear Dynamics, Part I, World Scientific, Singapore, 1998.doi: 10.1142/9789812798596. |
[18] |
L. P. Shil'nikov, A. Shil'nikov, D. Turaev and L. Chua, Methods of Qualitative Theory in Nonlinear Dynamics, Part II, World Scientific, Singapore, 2001.doi: 10.1142/9789812798558_0001. |
[19] |
C. Tresser, About some theorems by L. P. Shil'nikov, Inst. H. Poincare Phys. Thoré., 40 (1984), 441-461. |
[20] |
K. Watada, T. Endo and H. Seishi, Shilnikov orbits in an autonomous third-order chaotic phase-locked loop, IEEE Trans. Circuits Syst., 45 (1998), 979-983. |
[21] |
S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, $2^{nd}$ edition, Springer-Verlag, New York, 2003. |
[22] |
D. Wilczak, The existence of Shilnikov homoclinic orbits in the Michelson system: A computer assisted proof, Found Comput. Math., 6 (2006), 495-535.doi: 10.1007/s10208-005-0201-2. |
[23] |
X.-S. Yang and Q. D. Li, Chaos generator via Wien-bridge oscillator, Electron. Lett., 38 (2002), 623-625.doi: 10.1049/el:20020456. |
[24] |
X.-S. Yang and Q. D. Li, Generate n-scroll attractor in linear system by scalar output feedback, Chaos Solitons Fract., 18 (2003), 25-29.doi: 10.1016/S0960-0779(02)00638-0. |