September  2016, 36(9): 5131-5162. doi: 10.3934/dcds.2016023

Periodic solutions of the planar N-center problem with topological constraints

1. 

Department of Mathematics, University of Toronto, 40 St. George St., Room 6290, Toronto, Ontario, M5S 2E4, Canada

Received  July 2015 Revised  November 2015 Published  May 2016

In the planar $N$-center problem, given a non-trivial free homotopy class of the configuration space satisfying certain conditions, we show that there is at least one collision-free $T$-periodic solution for any positive $T.$ The direct method of calculus of variations is used and the main difficulty is to show that minimizers under certain topological constraints are free of collision.
Citation: Guowei Yu. Periodic solutions of the planar N-center problem with topological constraints. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5131-5162. doi: 10.3934/dcds.2016023
References:
[1]

A. Ambrosetti and V. Coti Zelati, Periodic Solutions of Singular Lagrangian Systems, Progress in Nonlinear Differential Equations and their Applications, 10, Birkhäuser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0319-3.

[2]

A. Bahri and P. H. Rabinowitz, A minimax method for a class of Hamiltonian systems with singular potentials, J. Funct. Anal., 82 (1989), 412-428. doi: 10.1016/0022-1236(89)90078-5.

[3]

V. Barutello, D. L. Ferrario and S. Terracini, Symmetry groups of the planar three-body problem and action-minimizing trajectories, Arch. Ration. Mech. Anal., 190 (2008), 189-226. doi: 10.1007/s00205-008-0131-7.

[4]

V. Barutello, S. Terracini and G. Verzini, Entire minimal parabolic trajectories: The planar anisotropic Kepler problem, Arch. Ration. Mech. Anal., 207 (2013), 583-609. doi: 10.1007/s00205-012-0565-9.

[5]

V. Barutello, S. Terracini and G. Verzini, Entire parabolic trajectories as minimal phase transitions, Calc. Var. Partial Differential Equations, 49 (2014), 391-429. doi: 10.1007/s00526-012-0587-z.

[6]

K.-C. Chen, Binary decompositions for planar N-body problems and symmetric periodic solutions, Arch. Ration. Mech. Anal., 170 (2003), 247-276. doi: 10.1007/s00205-003-0277-2.

[7]

K.-C. Chen, Existence and minimizing properties of retrograde orbits to the three-body problem with various choices of masses, Ann. of Math. (2), 167 (2008), 325-348. doi: 10.4007/annals.2008.167.325.

[8]

A. Chenciner, Action minimizing solutions of the Newtonian n-body problem: From homology to symmetry, in Proceedings of the International Congress of Mathematicians, Higher Ed. Press, Beijing, (2002), 279-294.

[9]

A. Chenciner, J. Gerver, R. Montgomery and C. Simó, Simple choreographic motions of N bodies: A preliminary study, in Geometry, mechanics, and dynamics, (2002), 287-308. doi: 10.1007/0-387-21791-6_9.

[10]

A. Chenciner and R. Montgomery, A remarkable periodic solution of the three-body problem in the case of equal masses, Ann. of Math. (2), 152 (2000), 881-901. doi: 10.2307/2661357.

[11]

A. Chenciner and A. Venturelli., Minima de l'intégrale d'action du probléme newtonien de 4 corps de masses égales dans $\mathbbR^3$: orbites "hip-hop'', Celestial Mech. Dynam. Astronom., 77 (2000), 139-152. doi: 10.1023/A:1008381001328.

[12]

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998.

[13]

D. Ferrario and S. Terracini, On the existence of collisionless equivariant minimizers for the classical n-body problem, Invent. Math., 155 (2004), 305-362. doi: 10.1007/s00222-003-0322-7.

[14]

G. Fusco, G. F. Gronchi and P. Negrini, Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem, Invent. Math., 185 (2011), 283-332. doi: 10.1007/s00222-010-0306-3.

[15]

W. B. Gordon, Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., 204 (1975), 113-135. doi: 10.1090/S0002-9947-1975-0377983-1.

[16]

W. B. Gordon, A minimizing property of Keplerian orbits, Amer. J. Math., 99 (1977), 961-971. doi: 10.2307/2373993.

[17]

J. Hass and P. Scott, Intersections of curves on surfaces, Israel J. Math., 51 (1985), 90-120. doi: 10.1007/BF02772960.

[18]

M. W. Hirsch, Differential Topology, Texts in Mathematics, 33. Springer-Verlag, New York, 1994.

[19]

R. Montgomery, The N-body problem, the braid group, and action-minimizing periodic solutions, Nonlinearity, 11 (1998), 363-376. doi: 10.1088/0951-7715/11/2/011.

[20]

M. Shibayama, Variational proof of the existence of the super-eight orbit in the four-body problem, Arch. Ration. Mech. Anal., 214 (2014), 77-98. doi: 10.1007/s00205-014-0753-x.

[21]

N. Soave, Symbolic dynamics: From the N-centre to the (N +1)-body problem, a preliminary study, NoDEA Nonlinear Differential Equations Appl., 21 (2014), 371-413. doi: 10.1007/s00030-013-0251-0.

[22]

N. Soave and S. Terracini, Symbolic dynamics for the N-centre problem at negative energies, Discrete Contin. Dyn. Syst. - A, 32 (2012), 3245-3301. doi: 10.3934/dcds.2012.32.3245.

[23]

S. Terracini and A. Venturelli, Symmetric trajectories for the 2N-body problem with equal masses, Arch. Ration. Mech. Anal., 184 (2007), 465-493. doi: 10.1007/s00205-006-0030-8.

[24]

A. Venturelli, Application de la Minimisation de L'action au Problme des N Corps Dans Leplan et Dans L'espace, Ph.D thesis, Universit Denis Diderot in Paris, 2002.

[25]

G. Yu, Simple choreography solutions of newtonian n-body problem, arXiv:1509.04999, 2015.

[26]

G. Yu, Shape space figure 8 solutions of three body problem with two equalmasses, arXiv:0707.0078, 2015.

[27]

G. Yu, Periodic solutions of the rotating N-center and restricted N + 1-body problems with topological constraints,, work in progress., (). 

show all references

References:
[1]

A. Ambrosetti and V. Coti Zelati, Periodic Solutions of Singular Lagrangian Systems, Progress in Nonlinear Differential Equations and their Applications, 10, Birkhäuser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0319-3.

[2]

A. Bahri and P. H. Rabinowitz, A minimax method for a class of Hamiltonian systems with singular potentials, J. Funct. Anal., 82 (1989), 412-428. doi: 10.1016/0022-1236(89)90078-5.

[3]

V. Barutello, D. L. Ferrario and S. Terracini, Symmetry groups of the planar three-body problem and action-minimizing trajectories, Arch. Ration. Mech. Anal., 190 (2008), 189-226. doi: 10.1007/s00205-008-0131-7.

[4]

V. Barutello, S. Terracini and G. Verzini, Entire minimal parabolic trajectories: The planar anisotropic Kepler problem, Arch. Ration. Mech. Anal., 207 (2013), 583-609. doi: 10.1007/s00205-012-0565-9.

[5]

V. Barutello, S. Terracini and G. Verzini, Entire parabolic trajectories as minimal phase transitions, Calc. Var. Partial Differential Equations, 49 (2014), 391-429. doi: 10.1007/s00526-012-0587-z.

[6]

K.-C. Chen, Binary decompositions for planar N-body problems and symmetric periodic solutions, Arch. Ration. Mech. Anal., 170 (2003), 247-276. doi: 10.1007/s00205-003-0277-2.

[7]

K.-C. Chen, Existence and minimizing properties of retrograde orbits to the three-body problem with various choices of masses, Ann. of Math. (2), 167 (2008), 325-348. doi: 10.4007/annals.2008.167.325.

[8]

A. Chenciner, Action minimizing solutions of the Newtonian n-body problem: From homology to symmetry, in Proceedings of the International Congress of Mathematicians, Higher Ed. Press, Beijing, (2002), 279-294.

[9]

A. Chenciner, J. Gerver, R. Montgomery and C. Simó, Simple choreographic motions of N bodies: A preliminary study, in Geometry, mechanics, and dynamics, (2002), 287-308. doi: 10.1007/0-387-21791-6_9.

[10]

A. Chenciner and R. Montgomery, A remarkable periodic solution of the three-body problem in the case of equal masses, Ann. of Math. (2), 152 (2000), 881-901. doi: 10.2307/2661357.

[11]

A. Chenciner and A. Venturelli., Minima de l'intégrale d'action du probléme newtonien de 4 corps de masses égales dans $\mathbbR^3$: orbites "hip-hop'', Celestial Mech. Dynam. Astronom., 77 (2000), 139-152. doi: 10.1023/A:1008381001328.

[12]

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998.

[13]

D. Ferrario and S. Terracini, On the existence of collisionless equivariant minimizers for the classical n-body problem, Invent. Math., 155 (2004), 305-362. doi: 10.1007/s00222-003-0322-7.

[14]

G. Fusco, G. F. Gronchi and P. Negrini, Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem, Invent. Math., 185 (2011), 283-332. doi: 10.1007/s00222-010-0306-3.

[15]

W. B. Gordon, Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., 204 (1975), 113-135. doi: 10.1090/S0002-9947-1975-0377983-1.

[16]

W. B. Gordon, A minimizing property of Keplerian orbits, Amer. J. Math., 99 (1977), 961-971. doi: 10.2307/2373993.

[17]

J. Hass and P. Scott, Intersections of curves on surfaces, Israel J. Math., 51 (1985), 90-120. doi: 10.1007/BF02772960.

[18]

M. W. Hirsch, Differential Topology, Texts in Mathematics, 33. Springer-Verlag, New York, 1994.

[19]

R. Montgomery, The N-body problem, the braid group, and action-minimizing periodic solutions, Nonlinearity, 11 (1998), 363-376. doi: 10.1088/0951-7715/11/2/011.

[20]

M. Shibayama, Variational proof of the existence of the super-eight orbit in the four-body problem, Arch. Ration. Mech. Anal., 214 (2014), 77-98. doi: 10.1007/s00205-014-0753-x.

[21]

N. Soave, Symbolic dynamics: From the N-centre to the (N +1)-body problem, a preliminary study, NoDEA Nonlinear Differential Equations Appl., 21 (2014), 371-413. doi: 10.1007/s00030-013-0251-0.

[22]

N. Soave and S. Terracini, Symbolic dynamics for the N-centre problem at negative energies, Discrete Contin. Dyn. Syst. - A, 32 (2012), 3245-3301. doi: 10.3934/dcds.2012.32.3245.

[23]

S. Terracini and A. Venturelli, Symmetric trajectories for the 2N-body problem with equal masses, Arch. Ration. Mech. Anal., 184 (2007), 465-493. doi: 10.1007/s00205-006-0030-8.

[24]

A. Venturelli, Application de la Minimisation de L'action au Problme des N Corps Dans Leplan et Dans L'espace, Ph.D thesis, Universit Denis Diderot in Paris, 2002.

[25]

G. Yu, Simple choreography solutions of newtonian n-body problem, arXiv:1509.04999, 2015.

[26]

G. Yu, Shape space figure 8 solutions of three body problem with two equalmasses, arXiv:0707.0078, 2015.

[27]

G. Yu, Periodic solutions of the rotating N-center and restricted N + 1-body problems with topological constraints,, work in progress., (). 

[1]

Sergey V. Bolotin, Piero Negrini. Global regularization for the $n$-center problem on a manifold. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 873-892. doi: 10.3934/dcds.2002.8.873

[2]

Francis Akutsah, Akindele Adebayo Mebawondu, Hammed Anuoluwapo Abass, Ojen Kumar Narain. A self adaptive method for solving a class of bilevel variational inequalities with split variational inequality and composed fixed point problem constraints in Hilbert spaces. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021046

[3]

Yuika Kajihara, Misturu Shibayama. Variational proof of the existence of brake orbits in the planar 2-center problem. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5785-5797. doi: 10.3934/dcds.2019254

[4]

Shuang Chen, Li-Ping Pang, Dan Li. An inexact semismooth Newton method for variational inequality with symmetric cone constraints. Journal of Industrial and Management Optimization, 2015, 11 (3) : 733-746. doi: 10.3934/jimo.2015.11.733

[5]

T. A. Shaposhnikova, M. N. Zubova. Homogenization problem for a parabolic variational inequality with constraints on subsets situated on the boundary of the domain. Networks and Heterogeneous Media, 2008, 3 (3) : 675-689. doi: 10.3934/nhm.2008.3.675

[6]

Jian Lu, Huaiyu Jian. Topological degree method for the rotationally symmetric $L_p$-Minkowski problem. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 971-980. doi: 10.3934/dcds.2016.36.971

[7]

Xiaona Fan, Li Jiang, Mengsi Li. Homotopy method for solving generalized Nash equilibrium problem with equality and inequality constraints. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1795-1807. doi: 10.3934/jimo.2018123

[8]

David Jerison, Nikola Kamburov. Free boundaries subject to topological constraints. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 7213-7248. doi: 10.3934/dcds.2019301

[9]

Yekini Shehu, Olaniyi Iyiola. On a modified extragradient method for variational inequality problem with application to industrial electricity production. Journal of Industrial and Management Optimization, 2019, 15 (1) : 319-342. doi: 10.3934/jimo.2018045

[10]

Jamilu Abubakar, Poom Kumam, Abor Isa Garba, Muhammad Sirajo Abdullahi, Abdulkarim Hassan Ibrahim, Wachirapong Jirakitpuwapat. An efficient iterative method for solving split variational inclusion problem with applications. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021160

[11]

Yarui Duan, Pengcheng Wu, Yuying Zhou. Penalty approximation method for a double obstacle quasilinear parabolic variational inequality problem. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022017

[12]

Marc Rauch. Variational principles for the topological pressure of measurable potentials. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : 367-394. doi: 10.3934/dcdss.2017018

[13]

Giuseppe Buttazzo, Luigi De Pascale, Ilaria Fragalà. Topological equivalence of some variational problems involving distances. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 247-258. doi: 10.3934/dcds.2001.7.247

[14]

Zalman Balanov, Carlos García-Azpeitia, Wieslaw Krawcewicz. On variational and topological methods in nonlinear difference equations. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2813-2844. doi: 10.3934/cpaa.2018133

[15]

Sergio Grillo, Marcela Zuccalli. Variational reduction of Lagrangian systems with general constraints. Journal of Geometric Mechanics, 2012, 4 (1) : 49-88. doi: 10.3934/jgm.2012.4.49

[16]

Gang Qian, Deren Han, Lingling Xu, Hai Yang. Solving nonadditive traffic assignment problems: A self-adaptive projection-auxiliary problem method for variational inequalities. Journal of Industrial and Management Optimization, 2013, 9 (1) : 255-274. doi: 10.3934/jimo.2013.9.255

[17]

Jacob Ashiwere Abuchu, Godwin Chidi Ugwunnadi, Ojen Kumar Narain. Inertial Mann-Type iterative method for solving split monotone variational inclusion problem with applications. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022075

[18]

Javier A. Almonacid, Gabriel N. Gatica, Ricardo Oyarzúa, Ricardo Ruiz-Baier. A new mixed finite element method for the n-dimensional Boussinesq problem with temperature-dependent viscosity. Networks and Heterogeneous Media, 2020, 15 (2) : 215-245. doi: 10.3934/nhm.2020010

[19]

Rafael Ortega, Andrés Rivera. Global bifurcations from the center of mass in the Sitnikov problem. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 719-732. doi: 10.3934/dcdsb.2010.14.719

[20]

Armengol Gasull, Jaume Giné, Joan Torregrosa. Center problem for systems with two monomial nonlinearities. Communications on Pure and Applied Analysis, 2016, 15 (2) : 577-598. doi: 10.3934/cpaa.2016.15.577

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (85)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]