\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Periodic solutions of the planar N-center problem with topological constraints

Abstract Related Papers Cited by
  • In the planar $N$-center problem, given a non-trivial free homotopy class of the configuration space satisfying certain conditions, we show that there is at least one collision-free $T$-periodic solution for any positive $T.$ The direct method of calculus of variations is used and the main difficulty is to show that minimizers under certain topological constraints are free of collision.
    Mathematics Subject Classification: Primary: 70F10, 37N05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Ambrosetti and V. Coti Zelati, Periodic Solutions of Singular Lagrangian Systems, Progress in Nonlinear Differential Equations and their Applications, 10, Birkhäuser Boston, Inc., Boston, MA, 1993.doi: 10.1007/978-1-4612-0319-3.

    [2]

    A. Bahri and P. H. Rabinowitz, A minimax method for a class of Hamiltonian systems with singular potentials, J. Funct. Anal., 82 (1989), 412-428.doi: 10.1016/0022-1236(89)90078-5.

    [3]

    V. Barutello, D. L. Ferrario and S. Terracini, Symmetry groups of the planar three-body problem and action-minimizing trajectories, Arch. Ration. Mech. Anal., 190 (2008), 189-226.doi: 10.1007/s00205-008-0131-7.

    [4]

    V. Barutello, S. Terracini and G. Verzini, Entire minimal parabolic trajectories: The planar anisotropic Kepler problem, Arch. Ration. Mech. Anal., 207 (2013), 583-609.doi: 10.1007/s00205-012-0565-9.

    [5]

    V. Barutello, S. Terracini and G. Verzini, Entire parabolic trajectories as minimal phase transitions, Calc. Var. Partial Differential Equations, 49 (2014), 391-429.doi: 10.1007/s00526-012-0587-z.

    [6]

    K.-C. Chen, Binary decompositions for planar N-body problems and symmetric periodic solutions, Arch. Ration. Mech. Anal., 170 (2003), 247-276.doi: 10.1007/s00205-003-0277-2.

    [7]

    K.-C. Chen, Existence and minimizing properties of retrograde orbits to the three-body problem with various choices of masses, Ann. of Math. (2), 167 (2008), 325-348.doi: 10.4007/annals.2008.167.325.

    [8]

    A. Chenciner, Action minimizing solutions of the Newtonian n-body problem: From homology to symmetry, in Proceedings of the International Congress of Mathematicians, Higher Ed. Press, Beijing, (2002), 279-294.

    [9]

    A. Chenciner, J. Gerver, R. Montgomery and C. Simó, Simple choreographic motions of N bodies: A preliminary study, in Geometry, mechanics, and dynamics, (2002), 287-308.doi: 10.1007/0-387-21791-6_9.

    [10]

    A. Chenciner and R. Montgomery, A remarkable periodic solution of the three-body problem in the case of equal masses, Ann. of Math. (2), 152 (2000), 881-901.doi: 10.2307/2661357.

    [11]

    A. Chenciner and A. Venturelli., Minima de l'intégrale d'action du probléme newtonien de 4 corps de masses égales dans $\mathbbR^3$: orbites "hip-hop'', Celestial Mech. Dynam. Astronom., 77 (2000), 139-152.doi: 10.1023/A:1008381001328.

    [12]

    L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998.

    [13]

    D. Ferrario and S. Terracini, On the existence of collisionless equivariant minimizers for the classical n-body problem, Invent. Math., 155 (2004), 305-362.doi: 10.1007/s00222-003-0322-7.

    [14]

    G. Fusco, G. F. Gronchi and P. Negrini, Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem, Invent. Math., 185 (2011), 283-332.doi: 10.1007/s00222-010-0306-3.

    [15]

    W. B. Gordon, Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., 204 (1975), 113-135.doi: 10.1090/S0002-9947-1975-0377983-1.

    [16]

    W. B. Gordon, A minimizing property of Keplerian orbits, Amer. J. Math., 99 (1977), 961-971.doi: 10.2307/2373993.

    [17]

    J. Hass and P. Scott, Intersections of curves on surfaces, Israel J. Math., 51 (1985), 90-120.doi: 10.1007/BF02772960.

    [18]

    M. W. Hirsch, Differential Topology, Texts in Mathematics, 33. Springer-Verlag, New York, 1994.

    [19]

    R. Montgomery, The N-body problem, the braid group, and action-minimizing periodic solutions, Nonlinearity, 11 (1998), 363-376.doi: 10.1088/0951-7715/11/2/011.

    [20]

    M. Shibayama, Variational proof of the existence of the super-eight orbit in the four-body problem, Arch. Ration. Mech. Anal., 214 (2014), 77-98.doi: 10.1007/s00205-014-0753-x.

    [21]

    N. Soave, Symbolic dynamics: From the N-centre to the (N +1)-body problem, a preliminary study, NoDEA Nonlinear Differential Equations Appl., 21 (2014), 371-413.doi: 10.1007/s00030-013-0251-0.

    [22]

    N. Soave and S. Terracini, Symbolic dynamics for the N-centre problem at negative energies, Discrete Contin. Dyn. Syst. - A, 32 (2012), 3245-3301.doi: 10.3934/dcds.2012.32.3245.

    [23]

    S. Terracini and A. Venturelli, Symmetric trajectories for the 2N-body problem with equal masses, Arch. Ration. Mech. Anal., 184 (2007), 465-493.doi: 10.1007/s00205-006-0030-8.

    [24]

    A. Venturelli, Application de la Minimisation de L'action au Problme des N Corps Dans Leplan et Dans L'espace, Ph.D thesis, Universit Denis Diderot in Paris, 2002.

    [25]

    G. Yu, Simple choreography solutions of newtonian n-body problem, arXiv:1509.04999, 2015.

    [26]

    G. Yu, Shape space figure 8 solutions of three body problem with two equalmasses, arXiv:0707.0078, 2015.

    [27]

    G. Yu, Periodic solutions of the rotating N-center and restricted N + 1-body problems with topological constraints, work in progress.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(102) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return