September  2016, 36(9): 5183-5199. doi: 10.3934/dcds.2016025

Asymptotic behavior of a nonlocal KPP equation with an almost periodic nonlinearity

1. 

35 River Drive S. Apt. 210, Jersey City, NJ 07310, United States

Received  December 2014 Revised  February 2016 Published  May 2016

We consider a space-inhomogeneous KPP equation with a nonlocal diffusion and an almost-periodic nonlinearity. By employing and adapting the theory of homogenization, we show that solutions of this equation asymptotically converge to its stationary states in regions of space separated by a front that is determined by a Hamilton-Jacobi variational inequality.
Citation: Yan Zhang. Asymptotic behavior of a nonlocal KPP equation with an almost periodic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5183-5199. doi: 10.3934/dcds.2016025
References:
[1]

O. Alvarez and A. Tourin, Viscosity solutions of nonlinear integro-differential equations,, in Annales de l'Institut Henri Poincaré. Analyse non liné}aire, (1996), 293.   Google Scholar

[2]

M. Arisawa, Viscosity solution's approach to jump processes arising in mathematical finances,, in Proceedings of 10th International conference on mathematical finances sponcered by Daiwa securuty insurance, (2005).   Google Scholar

[3]

M. Arisawa, A localization of the Lévy operators arising in mathematical finances,, Stochastic Processes and Applications To Mathematical Finance, (2007), 23.  doi: 10.1142/9789812770448_0002.  Google Scholar

[4]

M. Arisawa, Homogenization of a class of integro-differential equations with Lévy operators,, Communications in Partial Differential Equations, 34 (2009), 617.  doi: 10.1080/03605300902963518.  Google Scholar

[5]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, in Partial differential equations and related topics, 446 (1975), 5.   Google Scholar

[6]

G. Barles, E. Chasseigne and C. Imbert et al., On the Dirichlet problem for second-order elliptic integro-differential equations,, Indiana University Mathematics Journal, 57 (2008), 213.  doi: 10.1512/iumj.2008.57.3315.  Google Scholar

[7]

G. Barles, S. Mirrahimi and B. Perthame, Concentration in Lotka-Volterra parabolic or integral equations: A general convergence result,, Methods and Applications of Analysis, 16 (2009), 321.  doi: 10.4310/MAA.2009.v16.n3.a4.  Google Scholar

[8]

H. Berestycki, G. Nadin, B. Perthame and L. Ryzhik, The non-local Fisher-{KPP} equation: Travelling waves and steady states,, Nonlinearity, 22 (2009), 2813.  doi: 10.1088/0951-7715/22/12/002.  Google Scholar

[9]

J. Coville, J. Dávila and S. Martinez, Nonlocal anisotropic dispersal with monostable nonlinearity,, Journal of Differential Equations, 244 (2008), 3080.  doi: 10.1016/j.jde.2007.11.002.  Google Scholar

[10]

J. Coville, J. Davila and S. Martinez, Pulsating fronts for nonlocal dispersion and KPP nonlinearity,, in Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 30 (2013), 179.  doi: 10.1016/j.anihpc.2012.07.005.  Google Scholar

[11]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bulletin of the American Mathematical Society, 27 (1992), 1.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[12]

M. G. Crandall, P.-L. Lions and P. E. Souganidis, Maximal solutions and universal bounds for some partial differential equations of evolution,, Archive for Rational Mechanics and Analysis, 105 (1989), 163.  doi: 10.1007/BF00250835.  Google Scholar

[13]

L. C. Evans, Periodic homogenisation of certain fully nonlinear partial differential equations,, Proc. Roy. Soc. Edinburgh Sect. A, 120 (1992), 245.  doi: 10.1017/S0308210500032121.  Google Scholar

[14]

L. Evans and P. Souganidis, A PDE approach to geometric optics for certain semilinear parabolic equations,, Indiana University mathematics journal, 38 (1989), 141.  doi: 10.1512/iumj.1989.38.38007.  Google Scholar

[15]

R. A. Fisher, The wave of advance of advantageous genes,, Annals of Eugenics, 7 (1937), 355.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[16]

M. Freidlin, Limit theorems for large deviations and reaction-diffusion equations,, The Annals of Probability, 13 (1985), 639.  doi: 10.1214/aop/1176992901.  Google Scholar

[17]

H. Ishii, Almost periodic homogenization of Hamilton-Jacobi equations,, in International conference on differential equations, (2000), 600.   Google Scholar

[18]

H. Ishii and S. Koike, Viscosity solutions of functional differential equations,, Advances in Mathematical Sciences and Applications, 3 (1994), 191.   Google Scholar

[19]

A. Kolmogorov, I. Petrovsky and N. Piskunov, Investigation of the equation of diffusion combined with increasing of the substance and its application to a biology problem,, Bull. Moscow State Univ. Ser. A: Math. Mech, 1 (1937), 1.   Google Scholar

[20]

T. S. Lim and A. Zlatos, Transition fronts for inhomogeneous Fisher-{KPP} reactions and non-local diffusion,, Trans. Amer. Math. Soc., (2015).  doi: 10.1090/tran/6602.  Google Scholar

[21]

P.-L. Lions, G. Papanicolaou and S. R. Varadhan, Homogenization of Hamilton-Jacobi equations,, Preliminary version., ().   Google Scholar

[22]

A. J. Majda and P. E. Souganidis, Large scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales,, Nonlinearity, 7 (1994), 1.  doi: 10.1088/0951-7715/7/1/001.  Google Scholar

[23]

B. Perthame and P. Souganidis, Front propagation for a jump process model arising in spatial ecology,, Dynamical Systems, 13 (2005), 1235.  doi: 10.3934/dcds.2005.13.1235.  Google Scholar

show all references

References:
[1]

O. Alvarez and A. Tourin, Viscosity solutions of nonlinear integro-differential equations,, in Annales de l'Institut Henri Poincaré. Analyse non liné}aire, (1996), 293.   Google Scholar

[2]

M. Arisawa, Viscosity solution's approach to jump processes arising in mathematical finances,, in Proceedings of 10th International conference on mathematical finances sponcered by Daiwa securuty insurance, (2005).   Google Scholar

[3]

M. Arisawa, A localization of the Lévy operators arising in mathematical finances,, Stochastic Processes and Applications To Mathematical Finance, (2007), 23.  doi: 10.1142/9789812770448_0002.  Google Scholar

[4]

M. Arisawa, Homogenization of a class of integro-differential equations with Lévy operators,, Communications in Partial Differential Equations, 34 (2009), 617.  doi: 10.1080/03605300902963518.  Google Scholar

[5]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, in Partial differential equations and related topics, 446 (1975), 5.   Google Scholar

[6]

G. Barles, E. Chasseigne and C. Imbert et al., On the Dirichlet problem for second-order elliptic integro-differential equations,, Indiana University Mathematics Journal, 57 (2008), 213.  doi: 10.1512/iumj.2008.57.3315.  Google Scholar

[7]

G. Barles, S. Mirrahimi and B. Perthame, Concentration in Lotka-Volterra parabolic or integral equations: A general convergence result,, Methods and Applications of Analysis, 16 (2009), 321.  doi: 10.4310/MAA.2009.v16.n3.a4.  Google Scholar

[8]

H. Berestycki, G. Nadin, B. Perthame and L. Ryzhik, The non-local Fisher-{KPP} equation: Travelling waves and steady states,, Nonlinearity, 22 (2009), 2813.  doi: 10.1088/0951-7715/22/12/002.  Google Scholar

[9]

J. Coville, J. Dávila and S. Martinez, Nonlocal anisotropic dispersal with monostable nonlinearity,, Journal of Differential Equations, 244 (2008), 3080.  doi: 10.1016/j.jde.2007.11.002.  Google Scholar

[10]

J. Coville, J. Davila and S. Martinez, Pulsating fronts for nonlocal dispersion and KPP nonlinearity,, in Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 30 (2013), 179.  doi: 10.1016/j.anihpc.2012.07.005.  Google Scholar

[11]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bulletin of the American Mathematical Society, 27 (1992), 1.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[12]

M. G. Crandall, P.-L. Lions and P. E. Souganidis, Maximal solutions and universal bounds for some partial differential equations of evolution,, Archive for Rational Mechanics and Analysis, 105 (1989), 163.  doi: 10.1007/BF00250835.  Google Scholar

[13]

L. C. Evans, Periodic homogenisation of certain fully nonlinear partial differential equations,, Proc. Roy. Soc. Edinburgh Sect. A, 120 (1992), 245.  doi: 10.1017/S0308210500032121.  Google Scholar

[14]

L. Evans and P. Souganidis, A PDE approach to geometric optics for certain semilinear parabolic equations,, Indiana University mathematics journal, 38 (1989), 141.  doi: 10.1512/iumj.1989.38.38007.  Google Scholar

[15]

R. A. Fisher, The wave of advance of advantageous genes,, Annals of Eugenics, 7 (1937), 355.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[16]

M. Freidlin, Limit theorems for large deviations and reaction-diffusion equations,, The Annals of Probability, 13 (1985), 639.  doi: 10.1214/aop/1176992901.  Google Scholar

[17]

H. Ishii, Almost periodic homogenization of Hamilton-Jacobi equations,, in International conference on differential equations, (2000), 600.   Google Scholar

[18]

H. Ishii and S. Koike, Viscosity solutions of functional differential equations,, Advances in Mathematical Sciences and Applications, 3 (1994), 191.   Google Scholar

[19]

A. Kolmogorov, I. Petrovsky and N. Piskunov, Investigation of the equation of diffusion combined with increasing of the substance and its application to a biology problem,, Bull. Moscow State Univ. Ser. A: Math. Mech, 1 (1937), 1.   Google Scholar

[20]

T. S. Lim and A. Zlatos, Transition fronts for inhomogeneous Fisher-{KPP} reactions and non-local diffusion,, Trans. Amer. Math. Soc., (2015).  doi: 10.1090/tran/6602.  Google Scholar

[21]

P.-L. Lions, G. Papanicolaou and S. R. Varadhan, Homogenization of Hamilton-Jacobi equations,, Preliminary version., ().   Google Scholar

[22]

A. J. Majda and P. E. Souganidis, Large scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales,, Nonlinearity, 7 (1994), 1.  doi: 10.1088/0951-7715/7/1/001.  Google Scholar

[23]

B. Perthame and P. Souganidis, Front propagation for a jump process model arising in spatial ecology,, Dynamical Systems, 13 (2005), 1235.  doi: 10.3934/dcds.2005.13.1235.  Google Scholar

[1]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[2]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[3]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[4]

Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190

[5]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[6]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[7]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[8]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[9]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[10]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[11]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[12]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[13]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[14]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[15]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[16]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

[17]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[18]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[19]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[20]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]