September  2016, 36(9): 5201-5221. doi: 10.3934/dcds.2016026

Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing

1. 

Department of Mathematics, Sichuan Normal University, Chengdu, Sichuan 610066, China

Received  August 2015 Revised  January 2016 Published  May 2016

In this paper, we study the global well-posedness for the Camassa-Holm(C-H) equation with a forcing in $H^1(\mathbb{R})$ by the characteristic method. Due to the forcing, many important properties to study the well-posedness of weak solutions do not inherit from the C-H equation without a forcing, such as conservation laws, integrability. By exploiting the balance law and some new estimates, we prove the existence and uniqueness of global weak solutions for the C-H equation with a forcing in $H^1(\mathbb{R})$.
Citation: Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026
References:
[1]

M. S. Alber, R. Camassa, D. D. Holm and J. E. Marsden, The geometry of peaked solitons and billiard solutions of a class of integrable PDE's,, Lett. Math. Phys., 32 (1994), 137.  doi: 10.1007/BF00739423.  Google Scholar

[2]

N. Aronszajn, Differentiability of Lipschitzian mappings between Banach spaces,, Studia Math., 57 (1976), 147.   Google Scholar

[3]

R. Beals, D. H. Sattinger and J. Szmigielski, Multi-peakons and a theorem of Stieltjes,, Inverse Problems, 15 (1999).  doi: 10.1088/0266-5611/15/1/001.  Google Scholar

[4]

A. Bressan and A. Constantin, Global conservative solutions to the Camassa-Holm equation,, Arch. Rat. Mech. Anal., 183 (2007), 215.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[5]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl., 5 (2007), 1.  doi: 10.1142/S0219530507000857.  Google Scholar

[6]

A. Bressan, G. Chen and Q. Zhang, Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics,, Discr. Cont. Dyn. Syst., 35 (2015), 25.   Google Scholar

[7]

A. Bressan, G. Chen and Q. Zhang, Unique conservative solutions to a variational wave equation,, Arch. Rat. Mech. Anal., 217 (2015), 1069.  doi: 10.1007/s00205-015-0849-y.  Google Scholar

[8]

G. Chen and Y. Shen, Existence and regularity of solutions in nonlinear wave equations,, Discr. Cont. Dyn. Syst., 35 (2015), 3327.  doi: 10.3934/dcds.2015.35.3327.  Google Scholar

[9]

G. Chen, Y. Shen and S. Zhu, Global well-posedness of weak solutions for a generalized water wave equation,, preprint., ().   Google Scholar

[10]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[11]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229.  doi: 10.1007/BF02392586.  Google Scholar

[12]

A. Constantin, V. Gerdjikov and R. Ivanov, Inverse scattering transform for the Camassa-Holm equation,, Inverse Problems, 22 (2006), 2197.  doi: 10.1088/0266-5611/22/6/017.  Google Scholar

[13]

A. Constantin and R. S. Johnson, Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis,, Fluid Dynam. Res., 40 (2008), 175.  doi: 10.1016/j.fluiddyn.2007.06.004.  Google Scholar

[14]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 192 (2009), 165.  doi: 10.1007/s00205-008-0128-2.  Google Scholar

[15]

A. Constantin and H. P. McKean, A shallow water equation on the circle,, Comm. Pure Appl. Math., 52 (1999), 949.  doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D.  Google Scholar

[16]

A. Constantin and L. Molinet, Orbital stability of solitary waves for a shallow water equation,, Physica D, 157 (2001), 75.  doi: 10.1016/S0167-2789(01)00298-6.  Google Scholar

[17]

A. Constantin and W. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603.  doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L.  Google Scholar

[18]

K. E. Dika and L. Molinet, Stability of multipeakons,, Ann. Inst. H. Poincaré, 26 (2009), 1517.  doi: 10.1016/j.anihpc.2009.02.002.  Google Scholar

[19]

L. C. Evans, Partial Differential Equations,, Second edition, (2010).  doi: 10.1090/gsm/019.  Google Scholar

[20]

B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries,, Physica D, 4 (): 47.  doi: 10.1016/0167-2789(81)90004-X.  Google Scholar

[21]

H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation- a Lagrangian point of view,, Comm. Partial Differential Equations, 32 (2007), 1511.  doi: 10.1080/03605300601088674.  Google Scholar

[22]

R. I. Ivanov, Water waves and integrability,, Philos. Trans. Roy. Soc. Lond. Ser. A, 365 (2007), 2267.  doi: 10.1098/rsta.2007.2007.  Google Scholar

[23]

M. Lakshmanan, Integrable nonlinear wave equations and possible connections to tsunami dynamics,, in: Tsunami and Nonlinear Waves, (2007), 31.  doi: 10.1007/978-3-540-71256-5_2.  Google Scholar

[24]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation,, Comm. Pure Appl. Math., 53 (2000), 1411.  doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.  Google Scholar

[25]

Z. Xin and P. Zhang, On the uniqueness and large time behavior of the weak solutions to a shallow water equation,, Comm. Partial Differential Equations, 27 (2002), 1815.  doi: 10.1081/PDE-120016129.  Google Scholar

show all references

References:
[1]

M. S. Alber, R. Camassa, D. D. Holm and J. E. Marsden, The geometry of peaked solitons and billiard solutions of a class of integrable PDE's,, Lett. Math. Phys., 32 (1994), 137.  doi: 10.1007/BF00739423.  Google Scholar

[2]

N. Aronszajn, Differentiability of Lipschitzian mappings between Banach spaces,, Studia Math., 57 (1976), 147.   Google Scholar

[3]

R. Beals, D. H. Sattinger and J. Szmigielski, Multi-peakons and a theorem of Stieltjes,, Inverse Problems, 15 (1999).  doi: 10.1088/0266-5611/15/1/001.  Google Scholar

[4]

A. Bressan and A. Constantin, Global conservative solutions to the Camassa-Holm equation,, Arch. Rat. Mech. Anal., 183 (2007), 215.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[5]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl., 5 (2007), 1.  doi: 10.1142/S0219530507000857.  Google Scholar

[6]

A. Bressan, G. Chen and Q. Zhang, Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics,, Discr. Cont. Dyn. Syst., 35 (2015), 25.   Google Scholar

[7]

A. Bressan, G. Chen and Q. Zhang, Unique conservative solutions to a variational wave equation,, Arch. Rat. Mech. Anal., 217 (2015), 1069.  doi: 10.1007/s00205-015-0849-y.  Google Scholar

[8]

G. Chen and Y. Shen, Existence and regularity of solutions in nonlinear wave equations,, Discr. Cont. Dyn. Syst., 35 (2015), 3327.  doi: 10.3934/dcds.2015.35.3327.  Google Scholar

[9]

G. Chen, Y. Shen and S. Zhu, Global well-posedness of weak solutions for a generalized water wave equation,, preprint., ().   Google Scholar

[10]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[11]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229.  doi: 10.1007/BF02392586.  Google Scholar

[12]

A. Constantin, V. Gerdjikov and R. Ivanov, Inverse scattering transform for the Camassa-Holm equation,, Inverse Problems, 22 (2006), 2197.  doi: 10.1088/0266-5611/22/6/017.  Google Scholar

[13]

A. Constantin and R. S. Johnson, Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis,, Fluid Dynam. Res., 40 (2008), 175.  doi: 10.1016/j.fluiddyn.2007.06.004.  Google Scholar

[14]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 192 (2009), 165.  doi: 10.1007/s00205-008-0128-2.  Google Scholar

[15]

A. Constantin and H. P. McKean, A shallow water equation on the circle,, Comm. Pure Appl. Math., 52 (1999), 949.  doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D.  Google Scholar

[16]

A. Constantin and L. Molinet, Orbital stability of solitary waves for a shallow water equation,, Physica D, 157 (2001), 75.  doi: 10.1016/S0167-2789(01)00298-6.  Google Scholar

[17]

A. Constantin and W. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603.  doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L.  Google Scholar

[18]

K. E. Dika and L. Molinet, Stability of multipeakons,, Ann. Inst. H. Poincaré, 26 (2009), 1517.  doi: 10.1016/j.anihpc.2009.02.002.  Google Scholar

[19]

L. C. Evans, Partial Differential Equations,, Second edition, (2010).  doi: 10.1090/gsm/019.  Google Scholar

[20]

B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries,, Physica D, 4 (): 47.  doi: 10.1016/0167-2789(81)90004-X.  Google Scholar

[21]

H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation- a Lagrangian point of view,, Comm. Partial Differential Equations, 32 (2007), 1511.  doi: 10.1080/03605300601088674.  Google Scholar

[22]

R. I. Ivanov, Water waves and integrability,, Philos. Trans. Roy. Soc. Lond. Ser. A, 365 (2007), 2267.  doi: 10.1098/rsta.2007.2007.  Google Scholar

[23]

M. Lakshmanan, Integrable nonlinear wave equations and possible connections to tsunami dynamics,, in: Tsunami and Nonlinear Waves, (2007), 31.  doi: 10.1007/978-3-540-71256-5_2.  Google Scholar

[24]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation,, Comm. Pure Appl. Math., 53 (2000), 1411.  doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.  Google Scholar

[25]

Z. Xin and P. Zhang, On the uniqueness and large time behavior of the weak solutions to a shallow water equation,, Comm. Partial Differential Equations, 27 (2002), 1815.  doi: 10.1081/PDE-120016129.  Google Scholar

[1]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[2]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[3]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[4]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

[5]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

[6]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[7]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[8]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[9]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[10]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[11]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[12]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[13]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[14]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[15]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[16]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[17]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[18]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[19]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[20]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]