October  2016, 36(10): 5245-5255. doi: 10.3934/dcds.2016029

Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems

1. 

Departamento de Matemática, Universidade Federal de São Carlos, Rod. Washington Luís, Km 235 - C.P. 676 - 13565-905, São Carlos, SP

2. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia

3. 

Departamento de Física, Química e Matemática, Universidade Federal de São Carlos, 18052-780, S.P., Brazil

Received  October 2015 Revised  December 2015 Published  July 2016

In this paper we completely characterize trivial polynomial Hamiltonian isochronous centers of degrees $5$ and $7$. Precisely, we provide simple formulas, up to linear change of coordinates, for the Hamiltonians of the form $H = \left(f_1^2 + f_2^2 \right)/2$, where $f = (f_1, f_2): \mathbb{R}^2\to \mathbb{R}^2$ is a polynomial map with $\det D f = 1$, $f(0,0) = (0,0)$ and the degree of $f$ is $3$ or $4$.
Citation: Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029
References:
[1]

Osaka J. Math., 14 (1977), 403-409.  Google Scholar

[2]

J. Differential Equations, 157 (1999), 373-413. doi: 10.1006/jdeq.1999.3635.  Google Scholar

[3]

Progress in Mathematics 190. Birkhäuser Verlag, Basel, 2000. doi: 10.1007/978-3-0348-8440-2.  Google Scholar

[4]

J. Differential Equations, 180 (2002), 334-373. doi: 10.1006/jdeq.2001.4065.  Google Scholar

[5]

J. Differential Equations, 259 (2015), 1649-1662. doi: 10.1016/j.jde.2015.03.009.  Google Scholar

[6]

J. Differential Equations, 179 (2002), 625-646. doi: 10.1006/jdeq.2001.4036.  Google Scholar

[7]

J. Reine Angew. Math., 340 (1983), 140-212.  Google Scholar

[8]

Nonlinear Anal., 34 (1998), 829-838. doi: 10.1016/S0362-546X(97)00604-4.  Google Scholar

show all references

References:
[1]

Osaka J. Math., 14 (1977), 403-409.  Google Scholar

[2]

J. Differential Equations, 157 (1999), 373-413. doi: 10.1006/jdeq.1999.3635.  Google Scholar

[3]

Progress in Mathematics 190. Birkhäuser Verlag, Basel, 2000. doi: 10.1007/978-3-0348-8440-2.  Google Scholar

[4]

J. Differential Equations, 180 (2002), 334-373. doi: 10.1006/jdeq.2001.4065.  Google Scholar

[5]

J. Differential Equations, 259 (2015), 1649-1662. doi: 10.1016/j.jde.2015.03.009.  Google Scholar

[6]

J. Differential Equations, 179 (2002), 625-646. doi: 10.1006/jdeq.2001.4036.  Google Scholar

[7]

J. Reine Angew. Math., 340 (1983), 140-212.  Google Scholar

[8]

Nonlinear Anal., 34 (1998), 829-838. doi: 10.1016/S0362-546X(97)00604-4.  Google Scholar

[1]

Montserrat Corbera, Claudia Valls. Reversible polynomial Hamiltonian systems of degree 3 with nilpotent saddles. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3209-3233. doi: 10.3934/dcdsb.2020225

[2]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2021, 13 (1) : 25-53. doi: 10.3934/jgm.2021001

[3]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3295-3317. doi: 10.3934/dcds.2020406

[4]

Jia Li, Junxiang Xu. On the reducibility of a class of almost periodic Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3905-3919. doi: 10.3934/dcdsb.2020268

[5]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407

[6]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[7]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[8]

Yves Capdeboscq, Shaun Chen Yang Ong. Quantitative jacobian determinant bounds for the conductivity equation in high contrast composite media. Discrete & Continuous Dynamical Systems - B, 2020, 25 (10) : 3857-3887. doi: 10.3934/dcdsb.2020228

[9]

Kai Cai, Guangyue Han. An optimization approach to the Langberg-Médard multiple unicast conjecture. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021001

[10]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[11]

Raphaël Côte, Frédéric Valet. Polynomial growth of high sobolev norms of solutions to the Zakharov-Kuznetsov equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1039-1058. doi: 10.3934/cpaa.2021005

[12]

Azeddine Elmajidi, Elhoussine Elmazoudi, Jamila Elalami, Noureddine Elalami. Dependent delay stability characterization for a polynomial T-S Carbon Dioxide model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021035

[13]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[14]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[15]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3093-3108. doi: 10.3934/dcds.2020399

[16]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[17]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

[18]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[19]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[20]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (107)
  • HTML views (0)
  • Cited by (1)

[Back to Top]