-
Previous Article
Periodic and eventually periodic points of affine infra-nilmanifold endomorphisms
- DCDS Home
- This Issue
-
Next Article
Partial regularity of solutions to the fractional Navier-Stokes equations
Bifurcation and one-sign solutions of the $p$-Laplacian involving a nonlinearity with zeros
1. | School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China |
References:
[1] |
A. Anane, Simplicité et isolation de la première valeur propre du $p$-Laplacien avec poids, Comptes Rendus Acad. Sc. Paris, Série I, 305 (1987), 725-728. |
[2] |
H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rew., 18 (1976), 620-709.
doi: 10.1137/1018114. |
[3] |
A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.
doi: 10.1006/jfan.1994.1078. |
[4] |
A. Ambrosetti, R. M. Calahorrano and F. R. Dobarro, Global branching for discontinuous problems, Comment. Math. Univ. Carolin., 31 (1990), 213-222. |
[5] |
A. Ambrosetti and P. Hess, Positive solutions of asymptotically linear elliptic eigenvalue problems, J. Math. Anal. Appl., 73 (1980), 411-422.
doi: 10.1016/0022-247X(80)90287-5. |
[6] |
A. Ambrosetti, J. G. Azorero and I. Peral, Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal., 137 (1996), 219-242.
doi: 10.1006/jfan.1996.0045. |
[7] |
A. Ambrosetti and A. Malchiodi, Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge Studies in Advanced Mathematics No. 104, Cambridge Univ. Press, 2007.
doi: 10.1017/CBO9780511618260. |
[8] |
C. J. Amick and R. E. L. Turner, A global branch of steady vortex rings, J. Rein. Angew. Math., 384 (1988), 1-23. |
[9] |
D. Arcoya, J. I. Diaz and L. Tello, $S$-shaped bifurcation branch in a quasilinear multivalued model arising in climatoloty, J. Differential Equations, 150 (1998), 215-225.
doi: 10.1006/jdeq.1998.3502. |
[10] |
D. Arcoya and J. L. Gámez, Bifurcation theory and related problems: anti-maximum principle and resonance, Comm. Partial Differential Equations, 26 (2001), 1879-1911.
doi: 10.1081/PDE-100107462. |
[11] |
M. S. Berger, Nonlinearity and Functional Analysis, Academic Press, 1977. |
[12] |
A. Cañada, P. Drábek and J. L. Gámez, Existence of positive solutions for some problems with nonlinear diffusion, Trans. Amer. Math. Soc., 349 (1997), 4231-4249.
doi: 10.1090/S0002-9947-97-01947-8. |
[13] |
G. Dai, Global branching for discontinuous problems involving the $p$-Laplacian, Electron. J. Differential Equations, 44 (2013), 1-10. |
[14] |
G. Dai, Eigenvalue, global bifurcation and positive solutions for a class of nonlocal elliptic equations, Topol. Methods Nonlinear Anal., Inpress. |
[15] |
G. Dai and R. Ma, Unilateral global bifurcation phenomena and nodal solutions for $p$-Laplacian, J. Differential Equations, 252 (2012), 2448-2468.
doi: 10.1016/j.jde.2011.09.026. |
[16] |
G. Dai, R. Ma and Y. Lu, Bifurcation from infinity and nodal solutions of quasilinear problems without the signum condition, J. Math. Anal. Appl., 397 (2013), 119-123.
doi: 10.1016/j.jmaa.2012.07.056. |
[17] |
E. N. Dancer, On the structure of solutions of non-linear eigenvalue problems, Indiana Univ. Math. J., 23 (1974), 1069-1076. |
[18] |
E. N. Dancer, Bifurcation from simple eigenvalues and eigenvalues of geometric multiplicity one, Bull. London Math. Soc., 34 (2002), 533-538.
doi: 10.1112/S002460930200108X. |
[19] |
K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, New-York, 1985.
doi: 10.1007/978-3-662-00547-7. |
[20] |
M. Delgado and A. Suárez, On the existence and multiplicity of positive solutions for some indefinite nonlinear eigenvalue problem, Proc. Amer. Math. Soc., 132 (2004), 1721-1728.
doi: 10.1090/S0002-9939-04-07233-8. |
[21] |
M. Del Pino and R. Manásevich, Global bifurcation from the eigenvalues of the $p$-Laplacian, J. Differential Equations, 92 (1991), 226-251.
doi: 10.1016/0022-0396(91)90048-E. |
[22] |
P. Drábek and Y. X. Huang, Bifurcation problems for the $p$-Laplacian in $\mathbb{R}^N2$, Trans. Amer. Math. Soc., 349 (1997), 171-188.
doi: 10.1090/S0002-9947-97-01788-1. |
[23] |
X. L. Fan, Global $C^{1,\alpha}$ regularity for variable exponent elliptic equations in divergence form, J. Differential Equations, 235 (2007), 397-417.
doi: 10.1016/j.jde.2007.01.008. |
[24] |
X. L. Fan, On the sub-supersolution method for $p(x)$-Laplacian equations, J. Math. Anal. Appl., 330 (2007), 665-682.
doi: 10.1016/j.jmaa.2006.07.093. |
[25] |
X. L. Fan and D. Zhao, A class of De Giorgi type and Hölder continuity, Nonlinear Anal., 36 (1999), 295-318.
doi: 10.1016/S0362-546X(97)00628-7. |
[26] |
D. G. De Figueiredo, J. P. Gossez and P. Ubilla, Local superlinearity and sublinearity for indefinite semilinear elliptic problems, J. Funct. Anal., 199 (2003), 452-467.
doi: 10.1016/S0022-1236(02)00060-5. |
[27] |
D. G. de Figueiredo, P. L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures Appl., 61 (1982), 41-63. |
[28] |
J. Fleckinger, R. Manásevich and Thélin, Global bifurcation from the first eigenvalue for a system of $p$-Laplacians, Math. Nachr., 182 (1996), 217-242.
doi: 10.1002/mana.19961820110. |
[29] |
J. García-Melián and J. Sabina de Lis, A local bifurcation theorem for degenerate elliptic equations with radial symmetry, J. Differential Equations, 179 (2002), 27-43. |
[30] |
P. Girg and P. Takáč, Bifurcations of positive and negative continua in quasilinear elliptic eigenvalue problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (2008), 275-327.
doi: 10.1007/s00023-008-0356-x. |
[31] |
M. Guedda and L. Véron, Bifurcation phenomena associated to the $p$-Laplace operator, Trans. Amer. Math. Soc., 310 (1988), 419-431.
doi: 10.2307/2001132. |
[32] |
K. C. Hung and S. H. Wang, A complete classification of bifurcation diagrams of classes of multiparameter $p$-Laplacian boundary value problems, J. Differential Equations, 246 (2009), 1568-1599.
doi: 10.1016/j.jde.2008.10.035. |
[33] |
L. Iturriaga et al., Positive solutions of the $p$-Laplacian involving a superlinear nonlinearity with zeros, J. Differential Equations, 248 (2010), 309-327.
doi: 10.1016/j.jde.2009.08.008. |
[34] |
H. Kielhöfer, Bifurcation Theory: An Introduction with Applications to PDEs, Springer, New York, 2004.
doi: 10.1007/b97365. |
[35] |
M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, Macmillan, New York, 1964. |
[36] |
Y. H. Lee and I. Sim, Global bifurcation phenomena for singular one-dimensional $p$-Laplacian, J. Differential Equations, 229 (2006), 229-256.
doi: 10.1016/j.jde.2006.03.021. |
[37] |
G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.
doi: 10.1016/0362-546X(88)90053-3. |
[38] |
P. L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev., 24 (1982), 441-467.
doi: 10.1137/1024101. |
[39] |
P. Liu, J. Shi and Y. Wang, Imperfect transcritical and pitchfork bifurcations, J. Funct. Anal., 251 (2007), 573-600.
doi: 10.1016/j.jfa.2007.06.015. |
[40] |
P. Liu, J. Shi and Y. Wang, Bifurcation from a degenerate simple eigenvalue, J. Funct. Anal., 264 (2013), 2269-2299.
doi: 10.1016/j.jfa.2013.02.010. |
[41] |
Z. Liu, Positive solutions of superlinear elliptic equations, J. Funct. Anal., 167 (1999), 370-398.
doi: 10.1006/jfan.1999.3446. |
[42] |
J. López-Gómez, Spectral Theory and Nonlinear Functional Analysis, Chapman and Hall/CRC, Boca Raton, 2001.
doi: 10.1201/9781420035506. |
[43] |
J. López-Gómez and C. Mora-Corral, Algebraic Multiplicity of Eigenvalues of Linear Operators, Advances in Operator Theory and Applications Vol. 177, Birkhaüser, Basel, 2007. |
[44] |
R. Ma, Global behavior of the components of nodal solutions of asymptotically linear eigenvalue problems, Appl. Math. Lett., 21 (2008), 754-760.
doi: 10.1016/j.aml.2007.07.029. |
[45] |
R. Ma and G. Dai, Global bifurcation and nodal solutions for a Sturm-Liouville problem with a nonsmooth nonlineariy, J. Funct. Anal., 265 (2013), 1443-1459.
doi: 10.1016/j.jfa.2013.06.017. |
[46] |
I. Peral, Multiplicity of solutions for the $p$-Laplacian, ICTP SMR 990/1, 1997. |
[47] |
S. Prashanth and K. Sreenadh, Multiplicity results in a ball for $p$-Laplace equation with positive nonlinearity, Adv. Differential Equations, 7 (2002), 877-896. |
[48] |
P. Pucci and J. Serrin, The strong maximum principle revisited, J. Differential Equations, 196 (2004), 1-66.
doi: 10.1016/j.jde.2003.05.001. |
[49] |
P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.
doi: 10.1016/0022-1236(71)90030-9. |
[50] |
P. H. Rabinowitz, On bifurcation from infinity, J. Funct. Anal., 14 (1973), 462-475.
doi: 10.1016/0022-0396(73)90061-2. |
[51] |
P. H. Rabinowitz, Some aspects of nonlinear eigenvalue problems, Rocky Mountain J. Math., 3 (1973), 161-202.
doi: 10.1216/RMJ-1973-3-2-161. |
[52] |
J. Shi, Persistence and bifurcation of degenerate solutions, J. Funct. Anal., 169 (1999), 494-531.
doi: 10.1006/jfan.1999.3483. |
[53] |
J. P. Shi and X. F. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differential Equations, 246 (2009), 2788-2812.
doi: 10.1016/j.jde.2008.09.009. |
[54] |
P. Takáč, L. Tello and M. Ulm, Variational problems with a $p$-homogeneous energy, Positivity, 6 (2002), 75-94.
doi: 10.1023/A:1012088127719. |
[55] |
P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126-150.
doi: 10.1016/0022-0396(84)90105-0. |
[56] |
M. Väth, Global bifurcation of the $p$-Laplacian and related operators, J. Differential Equations, 213 (2005), 389-409.
doi: 10.1016/j.jde.2004.10.005. |
[57] |
G. T. Whyburn, Topological Analysis, Princeton University Press, Princeton, 1964. |
show all references
References:
[1] |
A. Anane, Simplicité et isolation de la première valeur propre du $p$-Laplacien avec poids, Comptes Rendus Acad. Sc. Paris, Série I, 305 (1987), 725-728. |
[2] |
H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rew., 18 (1976), 620-709.
doi: 10.1137/1018114. |
[3] |
A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.
doi: 10.1006/jfan.1994.1078. |
[4] |
A. Ambrosetti, R. M. Calahorrano and F. R. Dobarro, Global branching for discontinuous problems, Comment. Math. Univ. Carolin., 31 (1990), 213-222. |
[5] |
A. Ambrosetti and P. Hess, Positive solutions of asymptotically linear elliptic eigenvalue problems, J. Math. Anal. Appl., 73 (1980), 411-422.
doi: 10.1016/0022-247X(80)90287-5. |
[6] |
A. Ambrosetti, J. G. Azorero and I. Peral, Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal., 137 (1996), 219-242.
doi: 10.1006/jfan.1996.0045. |
[7] |
A. Ambrosetti and A. Malchiodi, Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge Studies in Advanced Mathematics No. 104, Cambridge Univ. Press, 2007.
doi: 10.1017/CBO9780511618260. |
[8] |
C. J. Amick and R. E. L. Turner, A global branch of steady vortex rings, J. Rein. Angew. Math., 384 (1988), 1-23. |
[9] |
D. Arcoya, J. I. Diaz and L. Tello, $S$-shaped bifurcation branch in a quasilinear multivalued model arising in climatoloty, J. Differential Equations, 150 (1998), 215-225.
doi: 10.1006/jdeq.1998.3502. |
[10] |
D. Arcoya and J. L. Gámez, Bifurcation theory and related problems: anti-maximum principle and resonance, Comm. Partial Differential Equations, 26 (2001), 1879-1911.
doi: 10.1081/PDE-100107462. |
[11] |
M. S. Berger, Nonlinearity and Functional Analysis, Academic Press, 1977. |
[12] |
A. Cañada, P. Drábek and J. L. Gámez, Existence of positive solutions for some problems with nonlinear diffusion, Trans. Amer. Math. Soc., 349 (1997), 4231-4249.
doi: 10.1090/S0002-9947-97-01947-8. |
[13] |
G. Dai, Global branching for discontinuous problems involving the $p$-Laplacian, Electron. J. Differential Equations, 44 (2013), 1-10. |
[14] |
G. Dai, Eigenvalue, global bifurcation and positive solutions for a class of nonlocal elliptic equations, Topol. Methods Nonlinear Anal., Inpress. |
[15] |
G. Dai and R. Ma, Unilateral global bifurcation phenomena and nodal solutions for $p$-Laplacian, J. Differential Equations, 252 (2012), 2448-2468.
doi: 10.1016/j.jde.2011.09.026. |
[16] |
G. Dai, R. Ma and Y. Lu, Bifurcation from infinity and nodal solutions of quasilinear problems without the signum condition, J. Math. Anal. Appl., 397 (2013), 119-123.
doi: 10.1016/j.jmaa.2012.07.056. |
[17] |
E. N. Dancer, On the structure of solutions of non-linear eigenvalue problems, Indiana Univ. Math. J., 23 (1974), 1069-1076. |
[18] |
E. N. Dancer, Bifurcation from simple eigenvalues and eigenvalues of geometric multiplicity one, Bull. London Math. Soc., 34 (2002), 533-538.
doi: 10.1112/S002460930200108X. |
[19] |
K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, New-York, 1985.
doi: 10.1007/978-3-662-00547-7. |
[20] |
M. Delgado and A. Suárez, On the existence and multiplicity of positive solutions for some indefinite nonlinear eigenvalue problem, Proc. Amer. Math. Soc., 132 (2004), 1721-1728.
doi: 10.1090/S0002-9939-04-07233-8. |
[21] |
M. Del Pino and R. Manásevich, Global bifurcation from the eigenvalues of the $p$-Laplacian, J. Differential Equations, 92 (1991), 226-251.
doi: 10.1016/0022-0396(91)90048-E. |
[22] |
P. Drábek and Y. X. Huang, Bifurcation problems for the $p$-Laplacian in $\mathbb{R}^N2$, Trans. Amer. Math. Soc., 349 (1997), 171-188.
doi: 10.1090/S0002-9947-97-01788-1. |
[23] |
X. L. Fan, Global $C^{1,\alpha}$ regularity for variable exponent elliptic equations in divergence form, J. Differential Equations, 235 (2007), 397-417.
doi: 10.1016/j.jde.2007.01.008. |
[24] |
X. L. Fan, On the sub-supersolution method for $p(x)$-Laplacian equations, J. Math. Anal. Appl., 330 (2007), 665-682.
doi: 10.1016/j.jmaa.2006.07.093. |
[25] |
X. L. Fan and D. Zhao, A class of De Giorgi type and Hölder continuity, Nonlinear Anal., 36 (1999), 295-318.
doi: 10.1016/S0362-546X(97)00628-7. |
[26] |
D. G. De Figueiredo, J. P. Gossez and P. Ubilla, Local superlinearity and sublinearity for indefinite semilinear elliptic problems, J. Funct. Anal., 199 (2003), 452-467.
doi: 10.1016/S0022-1236(02)00060-5. |
[27] |
D. G. de Figueiredo, P. L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures Appl., 61 (1982), 41-63. |
[28] |
J. Fleckinger, R. Manásevich and Thélin, Global bifurcation from the first eigenvalue for a system of $p$-Laplacians, Math. Nachr., 182 (1996), 217-242.
doi: 10.1002/mana.19961820110. |
[29] |
J. García-Melián and J. Sabina de Lis, A local bifurcation theorem for degenerate elliptic equations with radial symmetry, J. Differential Equations, 179 (2002), 27-43. |
[30] |
P. Girg and P. Takáč, Bifurcations of positive and negative continua in quasilinear elliptic eigenvalue problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (2008), 275-327.
doi: 10.1007/s00023-008-0356-x. |
[31] |
M. Guedda and L. Véron, Bifurcation phenomena associated to the $p$-Laplace operator, Trans. Amer. Math. Soc., 310 (1988), 419-431.
doi: 10.2307/2001132. |
[32] |
K. C. Hung and S. H. Wang, A complete classification of bifurcation diagrams of classes of multiparameter $p$-Laplacian boundary value problems, J. Differential Equations, 246 (2009), 1568-1599.
doi: 10.1016/j.jde.2008.10.035. |
[33] |
L. Iturriaga et al., Positive solutions of the $p$-Laplacian involving a superlinear nonlinearity with zeros, J. Differential Equations, 248 (2010), 309-327.
doi: 10.1016/j.jde.2009.08.008. |
[34] |
H. Kielhöfer, Bifurcation Theory: An Introduction with Applications to PDEs, Springer, New York, 2004.
doi: 10.1007/b97365. |
[35] |
M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, Macmillan, New York, 1964. |
[36] |
Y. H. Lee and I. Sim, Global bifurcation phenomena for singular one-dimensional $p$-Laplacian, J. Differential Equations, 229 (2006), 229-256.
doi: 10.1016/j.jde.2006.03.021. |
[37] |
G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.
doi: 10.1016/0362-546X(88)90053-3. |
[38] |
P. L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev., 24 (1982), 441-467.
doi: 10.1137/1024101. |
[39] |
P. Liu, J. Shi and Y. Wang, Imperfect transcritical and pitchfork bifurcations, J. Funct. Anal., 251 (2007), 573-600.
doi: 10.1016/j.jfa.2007.06.015. |
[40] |
P. Liu, J. Shi and Y. Wang, Bifurcation from a degenerate simple eigenvalue, J. Funct. Anal., 264 (2013), 2269-2299.
doi: 10.1016/j.jfa.2013.02.010. |
[41] |
Z. Liu, Positive solutions of superlinear elliptic equations, J. Funct. Anal., 167 (1999), 370-398.
doi: 10.1006/jfan.1999.3446. |
[42] |
J. López-Gómez, Spectral Theory and Nonlinear Functional Analysis, Chapman and Hall/CRC, Boca Raton, 2001.
doi: 10.1201/9781420035506. |
[43] |
J. López-Gómez and C. Mora-Corral, Algebraic Multiplicity of Eigenvalues of Linear Operators, Advances in Operator Theory and Applications Vol. 177, Birkhaüser, Basel, 2007. |
[44] |
R. Ma, Global behavior of the components of nodal solutions of asymptotically linear eigenvalue problems, Appl. Math. Lett., 21 (2008), 754-760.
doi: 10.1016/j.aml.2007.07.029. |
[45] |
R. Ma and G. Dai, Global bifurcation and nodal solutions for a Sturm-Liouville problem with a nonsmooth nonlineariy, J. Funct. Anal., 265 (2013), 1443-1459.
doi: 10.1016/j.jfa.2013.06.017. |
[46] |
I. Peral, Multiplicity of solutions for the $p$-Laplacian, ICTP SMR 990/1, 1997. |
[47] |
S. Prashanth and K. Sreenadh, Multiplicity results in a ball for $p$-Laplace equation with positive nonlinearity, Adv. Differential Equations, 7 (2002), 877-896. |
[48] |
P. Pucci and J. Serrin, The strong maximum principle revisited, J. Differential Equations, 196 (2004), 1-66.
doi: 10.1016/j.jde.2003.05.001. |
[49] |
P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.
doi: 10.1016/0022-1236(71)90030-9. |
[50] |
P. H. Rabinowitz, On bifurcation from infinity, J. Funct. Anal., 14 (1973), 462-475.
doi: 10.1016/0022-0396(73)90061-2. |
[51] |
P. H. Rabinowitz, Some aspects of nonlinear eigenvalue problems, Rocky Mountain J. Math., 3 (1973), 161-202.
doi: 10.1216/RMJ-1973-3-2-161. |
[52] |
J. Shi, Persistence and bifurcation of degenerate solutions, J. Funct. Anal., 169 (1999), 494-531.
doi: 10.1006/jfan.1999.3483. |
[53] |
J. P. Shi and X. F. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differential Equations, 246 (2009), 2788-2812.
doi: 10.1016/j.jde.2008.09.009. |
[54] |
P. Takáč, L. Tello and M. Ulm, Variational problems with a $p$-homogeneous energy, Positivity, 6 (2002), 75-94.
doi: 10.1023/A:1012088127719. |
[55] |
P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126-150.
doi: 10.1016/0022-0396(84)90105-0. |
[56] |
M. Väth, Global bifurcation of the $p$-Laplacian and related operators, J. Differential Equations, 213 (2005), 389-409.
doi: 10.1016/j.jde.2004.10.005. |
[57] |
G. T. Whyburn, Topological Analysis, Princeton University Press, Princeton, 1964. |
[1] |
Guowei Dai, Ruyun Ma, Haiyan Wang. Eigenvalues, bifurcation and one-sign solutions for the periodic $p$-Laplacian. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2839-2872. doi: 10.3934/cpaa.2013.12.2839 |
[2] |
Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040 |
[3] |
Jinguo Zhang, Dengyun Yang. Fractional $ p $-sub-Laplacian operator problem with concave-convex nonlinearities on homogeneous groups. Electronic Research Archive, 2021, 29 (5) : 3243-3260. doi: 10.3934/era.2021036 |
[4] |
Po-Chun Huang, Shin-Hwa Wang, Tzung-Shin Yeh. Classification of bifurcation diagrams of a $P$-Laplacian nonpositone problem. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2297-2318. doi: 10.3934/cpaa.2013.12.2297 |
[5] |
Michael Filippakis, Alexandru Kristály, Nikolaos S. Papageorgiou. Existence of five nonzero solutions with exact sign for a $p$-Laplacian equation. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 405-440. doi: 10.3934/dcds.2009.24.405 |
[6] |
Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many radial solutions of a non--homogeneous $p$--Laplacian problem. Conference Publications, 2013, 2013 (special) : 51-59. doi: 10.3934/proc.2013.2013.51 |
[7] |
Marta García-Huidobro, Raul Manásevich, J. R. Ward. Vector p-Laplacian like operators, pseudo-eigenvalues, and bifurcation. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 299-321. doi: 10.3934/dcds.2007.19.299 |
[8] |
Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107 |
[9] |
Jian Lu, Huaiyu Jian. Topological degree method for the rotationally symmetric $L_p$-Minkowski problem. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 971-980. doi: 10.3934/dcds.2016.36.971 |
[10] |
Guowei Dai, Ruyun Ma. Unilateral global bifurcation for $p$-Laplacian with non-$p-$1-linearization nonlinearity. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 99-116. doi: 10.3934/dcds.2015.35.99 |
[11] |
Mihai Mihăilescu, Julio D. Rossi. Monotonicity with respect to $ p $ of the First Nontrivial Eigenvalue of the $ p $-Laplacian with Homogeneous Neumann Boundary Conditions. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4363-4371. doi: 10.3934/cpaa.2020198 |
[12] |
Shao-Yuan Huang. Global bifurcation and exact multiplicity of positive solutions for the one-dimensional Minkowski-curvature problem with sign-changing nonlinearity. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3267-3284. doi: 10.3934/cpaa.2019147 |
[13] |
María del Mar González, Regis Monneau. Slow motion of particle systems as a limit of a reaction-diffusion equation with half-Laplacian in dimension one. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1255-1286. doi: 10.3934/dcds.2012.32.1255 |
[14] |
K. D. Chu, D. D. Hai. Positive solutions for the one-dimensional singular superlinear $ p $-Laplacian problem. Communications on Pure and Applied Analysis, 2020, 19 (1) : 241-252. doi: 10.3934/cpaa.2020013 |
[15] |
Alexander Krasnosel'skii, Alexei Pokrovskii. On subharmonics bifurcation in equations with homogeneous nonlinearities. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 747-762. doi: 10.3934/dcds.2001.7.747 |
[16] |
Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184 |
[17] |
Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196 |
[18] |
John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805 |
[19] |
Mohan Mallick, R. Shivaji, Byungjae Son, S. Sundar. Bifurcation and multiplicity results for a class of $n\times n$ $p$-Laplacian system. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1295-1304. doi: 10.3934/cpaa.2018062 |
[20] |
Pavel Jirásek. On Compactness Conditions for the $p$-Laplacian. Communications on Pure and Applied Analysis, 2016, 15 (3) : 715-726. doi: 10.3934/cpaa.2016.15.715 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]