\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Bifurcation and one-sign solutions of the $p$-Laplacian involving a nonlinearity with zeros

Abstract Related Papers Cited by
  • In this paper, we use bifurcation method to investigate the existence and multiplicity of one-sign solutions of the $p$-Laplacian involving a linear/superlinear nonlinearity with zeros. To do this, we first establish a bifurcation theorem from infinity for nonlinear operator equation with homogeneous operator. To deal with the superlinear case, we establish several topological results involving superior limit.
    Mathematics Subject Classification: Primary: 47J15, 47J05; Secondary: 35J60, 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Anane, Simplicité et isolation de la première valeur propre du $p$-Laplacien avec poids, Comptes Rendus Acad. Sc. Paris, Série I, 305 (1987), 725-728.

    [2]

    H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rew., 18 (1976), 620-709.doi: 10.1137/1018114.

    [3]

    A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.doi: 10.1006/jfan.1994.1078.

    [4]

    A. Ambrosetti, R. M. Calahorrano and F. R. Dobarro, Global branching for discontinuous problems, Comment. Math. Univ. Carolin., 31 (1990), 213-222.

    [5]

    A. Ambrosetti and P. Hess, Positive solutions of asymptotically linear elliptic eigenvalue problems, J. Math. Anal. Appl., 73 (1980), 411-422.doi: 10.1016/0022-247X(80)90287-5.

    [6]

    A. Ambrosetti, J. G. Azorero and I. Peral, Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal., 137 (1996), 219-242.doi: 10.1006/jfan.1996.0045.

    [7]

    A. Ambrosetti and A. Malchiodi, Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge Studies in Advanced Mathematics No. 104, Cambridge Univ. Press, 2007.doi: 10.1017/CBO9780511618260.

    [8]

    C. J. Amick and R. E. L. Turner, A global branch of steady vortex rings, J. Rein. Angew. Math., 384 (1988), 1-23.

    [9]

    D. Arcoya, J. I. Diaz and L. Tello, $S$-shaped bifurcation branch in a quasilinear multivalued model arising in climatoloty, J. Differential Equations, 150 (1998), 215-225.doi: 10.1006/jdeq.1998.3502.

    [10]

    D. Arcoya and J. L. Gámez, Bifurcation theory and related problems: anti-maximum principle and resonance, Comm. Partial Differential Equations, 26 (2001), 1879-1911.doi: 10.1081/PDE-100107462.

    [11]

    M. S. Berger, Nonlinearity and Functional Analysis, Academic Press, 1977.

    [12]

    A. Cañada, P. Drábek and J. L. Gámez, Existence of positive solutions for some problems with nonlinear diffusion, Trans. Amer. Math. Soc., 349 (1997), 4231-4249.doi: 10.1090/S0002-9947-97-01947-8.

    [13]

    G. Dai, Global branching for discontinuous problems involving the $p$-Laplacian, Electron. J. Differential Equations, 44 (2013), 1-10.

    [14]

    G. Dai, Eigenvalue, global bifurcation and positive solutions for a class of nonlocal elliptic equations, Topol. Methods Nonlinear Anal., Inpress.

    [15]

    G. Dai and R. Ma, Unilateral global bifurcation phenomena and nodal solutions for $p$-Laplacian, J. Differential Equations, 252 (2012), 2448-2468.doi: 10.1016/j.jde.2011.09.026.

    [16]

    G. Dai, R. Ma and Y. Lu, Bifurcation from infinity and nodal solutions of quasilinear problems without the signum condition, J. Math. Anal. Appl., 397 (2013), 119-123.doi: 10.1016/j.jmaa.2012.07.056.

    [17]

    E. N. Dancer, On the structure of solutions of non-linear eigenvalue problems, Indiana Univ. Math. J., 23 (1974), 1069-1076.

    [18]

    E. N. Dancer, Bifurcation from simple eigenvalues and eigenvalues of geometric multiplicity one, Bull. London Math. Soc., 34 (2002), 533-538.doi: 10.1112/S002460930200108X.

    [19]

    K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, New-York, 1985.doi: 10.1007/978-3-662-00547-7.

    [20]

    M. Delgado and A. Suárez, On the existence and multiplicity of positive solutions for some indefinite nonlinear eigenvalue problem, Proc. Amer. Math. Soc., 132 (2004), 1721-1728.doi: 10.1090/S0002-9939-04-07233-8.

    [21]

    M. Del Pino and R. Manásevich, Global bifurcation from the eigenvalues of the $p$-Laplacian, J. Differential Equations, 92 (1991), 226-251.doi: 10.1016/0022-0396(91)90048-E.

    [22]

    P. Drábek and Y. X. Huang, Bifurcation problems for the $p$-Laplacian in $\mathbbR^N$, Trans. Amer. Math. Soc., 349 (1997), 171-188.doi: 10.1090/S0002-9947-97-01788-1.

    [23]

    X. L. Fan, Global $C^{1,\alpha}$ regularity for variable exponent elliptic equations in divergence form, J. Differential Equations, 235 (2007), 397-417.doi: 10.1016/j.jde.2007.01.008.

    [24]

    X. L. Fan, On the sub-supersolution method for $p(x)$-Laplacian equations, J. Math. Anal. Appl., 330 (2007), 665-682.doi: 10.1016/j.jmaa.2006.07.093.

    [25]

    X. L. Fan and D. Zhao, A class of De Giorgi type and Hölder continuity, Nonlinear Anal., 36 (1999), 295-318.doi: 10.1016/S0362-546X(97)00628-7.

    [26]

    D. G. De Figueiredo, J. P. Gossez and P. Ubilla, Local superlinearity and sublinearity for indefinite semilinear elliptic problems, J. Funct. Anal., 199 (2003), 452-467.doi: 10.1016/S0022-1236(02)00060-5.

    [27]

    D. G. de Figueiredo, P. L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures Appl., 61 (1982), 41-63.

    [28]

    J. Fleckinger, R. Manásevich and Thélin, Global bifurcation from the first eigenvalue for a system of $p$-Laplacians, Math. Nachr., 182 (1996), 217-242.doi: 10.1002/mana.19961820110.

    [29]

    J. García-Melián and J. Sabina de Lis, A local bifurcation theorem for degenerate elliptic equations with radial symmetry, J. Differential Equations, 179 (2002), 27-43.

    [30]

    P. Girg and P. Takáč, Bifurcations of positive and negative continua in quasilinear elliptic eigenvalue problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (2008), 275-327.doi: 10.1007/s00023-008-0356-x.

    [31]

    M. Guedda and L. Véron, Bifurcation phenomena associated to the $p$-Laplace operator, Trans. Amer. Math. Soc., 310 (1988), 419-431.doi: 10.2307/2001132.

    [32]

    K. C. Hung and S. H. Wang, A complete classification of bifurcation diagrams of classes of multiparameter $p$-Laplacian boundary value problems, J. Differential Equations, 246 (2009), 1568-1599.doi: 10.1016/j.jde.2008.10.035.

    [33]

    L. Iturriaga et al., Positive solutions of the $p$-Laplacian involving a superlinear nonlinearity with zeros, J. Differential Equations, 248 (2010), 309-327.doi: 10.1016/j.jde.2009.08.008.

    [34]

    H. Kielhöfer, Bifurcation Theory: An Introduction with Applications to PDEs, Springer, New York, 2004.doi: 10.1007/b97365.

    [35]

    M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, Macmillan, New York, 1964.

    [36]

    Y. H. Lee and I. Sim, Global bifurcation phenomena for singular one-dimensional $p$-Laplacian, J. Differential Equations, 229 (2006), 229-256.doi: 10.1016/j.jde.2006.03.021.

    [37]

    G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.doi: 10.1016/0362-546X(88)90053-3.

    [38]

    P. L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev., 24 (1982), 441-467.doi: 10.1137/1024101.

    [39]

    P. Liu, J. Shi and Y. Wang, Imperfect transcritical and pitchfork bifurcations, J. Funct. Anal., 251 (2007), 573-600.doi: 10.1016/j.jfa.2007.06.015.

    [40]

    P. Liu, J. Shi and Y. Wang, Bifurcation from a degenerate simple eigenvalue, J. Funct. Anal., 264 (2013), 2269-2299.doi: 10.1016/j.jfa.2013.02.010.

    [41]

    Z. Liu, Positive solutions of superlinear elliptic equations, J. Funct. Anal., 167 (1999), 370-398.doi: 10.1006/jfan.1999.3446.

    [42]

    J. López-Gómez, Spectral Theory and Nonlinear Functional Analysis, Chapman and Hall/CRC, Boca Raton, 2001.doi: 10.1201/9781420035506.

    [43]

    J. López-Gómez and C. Mora-Corral, Algebraic Multiplicity of Eigenvalues of Linear Operators, Advances in Operator Theory and Applications Vol. 177, Birkhaüser, Basel, 2007.

    [44]

    R. Ma, Global behavior of the components of nodal solutions of asymptotically linear eigenvalue problems, Appl. Math. Lett., 21 (2008), 754-760.doi: 10.1016/j.aml.2007.07.029.

    [45]

    R. Ma and G. Dai, Global bifurcation and nodal solutions for a Sturm-Liouville problem with a nonsmooth nonlineariy, J. Funct. Anal., 265 (2013), 1443-1459.doi: 10.1016/j.jfa.2013.06.017.

    [46]

    I. Peral, Multiplicity of solutions for the $p$-Laplacian, ICTP SMR 990/1, 1997.

    [47]

    S. Prashanth and K. Sreenadh, Multiplicity results in a ball for $p$-Laplace equation with positive nonlinearity, Adv. Differential Equations, 7 (2002), 877-896.

    [48]

    P. Pucci and J. Serrin, The strong maximum principle revisited, J. Differential Equations, 196 (2004), 1-66.doi: 10.1016/j.jde.2003.05.001.

    [49]

    P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.doi: 10.1016/0022-1236(71)90030-9.

    [50]

    P. H. Rabinowitz, On bifurcation from infinity, J. Funct. Anal., 14 (1973), 462-475.doi: 10.1016/0022-0396(73)90061-2.

    [51]

    P. H. Rabinowitz, Some aspects of nonlinear eigenvalue problems, Rocky Mountain J. Math., 3 (1973), 161-202.doi: 10.1216/RMJ-1973-3-2-161.

    [52]

    J. Shi, Persistence and bifurcation of degenerate solutions, J. Funct. Anal., 169 (1999), 494-531.doi: 10.1006/jfan.1999.3483.

    [53]

    J. P. Shi and X. F. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differential Equations, 246 (2009), 2788-2812.doi: 10.1016/j.jde.2008.09.009.

    [54]

    P. Takáč, L. Tello and M. Ulm, Variational problems with a $p$-homogeneous energy, Positivity, 6 (2002), 75-94.doi: 10.1023/A:1012088127719.

    [55]

    P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126-150.doi: 10.1016/0022-0396(84)90105-0.

    [56]

    M. Väth, Global bifurcation of the $p$-Laplacian and related operators, J. Differential Equations, 213 (2005), 389-409.doi: 10.1016/j.jde.2004.10.005.

    [57]

    G. T. Whyburn, Topological Analysis, Princeton University Press, Princeton, 1964.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(180) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return