Citation: |
[1] |
J. Aaronson, An Introduction to Infinite Ergodic Theory, American Mathematical Society, 1997.doi: 10.1090/surv/050. |
[2] |
J. Aaronson, M. Denker and M. Urbanski, Ergodic theory for Markov fibred systems and parabolic rational maps, Transactions of the American Mathematical Society, 337 (1993), 495-548.doi: 10.1090/S0002-9947-1993-1107025-2. |
[3] |
J. Aaronson and M. Denker, Local limit theorems for partial sums of stationary sequences generated by Gibbs-Markov maps, Stochastic Dynamics, 1 (2001), 193-237.doi: 10.1142/S0219493701000114. |
[4] |
E. Bolthausen and I. Goldsheid, Recurrence and transience of random walks in random environments on a strip, Communications in Mathematical Physics, 214 (2000), 429-447.doi: 10.1007/s002200000279. |
[5] |
J. Bremont, Behaviour of random walks on $\mathbbZ$ in a Gibbsian medium, C. R. Acad. Sci. Serie, 338 (2004), 895-898.doi: 10.1016/j.crma.2004.03.030. |
[6] |
L. A. Bunimovich, Y. G. Sinai and N. I. Chernov, Statistical properties of two-dimensional hyperbolic billiard, Uspekhi Mat. Nauk, 46 (1991), 43-92.doi: 10.1070/RM1991v046n04ABEH002827. |
[7] |
G. Cristadoro, M. Lenci and M. Seri, Recurrence for quenched random Lorentz tubes, Chaos, 20 (2010), 023115, 7 pp; erratum at Chaos, 20 (2010), 049903, 1 pp.doi: 10.1063/1.3405290. |
[8] |
G. Cristadoro, M. Degli Esposti, M. Lenci and M. Seri, Recurrence and higher ergodic properties for quenched random Lorentz tubes in dimension bigger than two, Journal of Statistical Physics, 144 (2011), 124-138.doi: 10.1007/s10955-011-0244-5. |
[9] |
D. Dolgopyat and L. Koralov, Motion in a random force field, Nonlinearity, 22 (2009), 187-211.doi: 10.1088/0951-7715/22/1/010. |
[10] |
D. Dolgopyat, D. Szász and T. Varjú, Limit Theorems for Locally Perturbed Lorentz processes, Duke Math. J., 148 (2009), 459-499.doi: 10.1215/00127094-2009-031. |
[11] |
H. Kesten, M. V. Koslov and F. Spitzer, A limit law for random walk in a random environment, Compositio Mathematica, 30 (1975), 145-168. |
[12] |
E. Key, Recurrence and transience criteria for random walk in a random environment, Annals of Probability, 12 (1984), 529-560.doi: 10.1214/aop/1176993304. |
[13] |
M. V. Koslov, A random walk on a line with stochastic structure, Theory of Probability and its Applications, 18 (1973), 406-408. |
[14] |
M. Lenci and S. Troubetzkoy, Infinite-horizon Lorentz tubes and gases: Recurrence and ergodic properties, Physica D: Nonlinear Phenomena, 240 (2011), 1510-1515.doi: 10.1016/j.physd.2011.06.020. |
[15] |
C. Little, Deterministically Driven Random Walks in Random Environment, Ph.D thesis, University of Surrey, 2013. |
[16] |
C. Little, Deterministically driven random walks on a finite state space, Dynamical Systems: An International Journal, 30 (2015), 200-207.doi: 10.1080/14689367.2014.993926. |
[17] |
I. Melbourne and M. Nicol, Almost sure invariance principle for nonuniformly hyperbolic systems, Communications in Mathematical Physics, 260 (2005), 131-146.doi: 10.1007/s00220-005-1407-5. |
[18] |
I. Melbourne and M. Nicol, A vector-valued almost sure invariance principle for hyperbolic dynamical systems, Annals of Probability, 37 (2009), 478-505.doi: 10.1214/08-AOP410. |
[19] |
T. Simula and M. Stenlund, Deterministic walks in quenched random environments of chaotic map, Journal of Physics A: Mathematical and Theoretical, 42 (2009), 245101 (14 pp).doi: 10.1088/1751-8113/42/24/245101. |
[20] |
Ya. G. Sinai, Dynamical systems with elastic reflections: Ergodic properties of dispersing billiards, Russian Mathematical Surveys, 25 (1970), 141-192. |
[21] |
Ya. G. Sinai, Limit behaviour of one-dimensional random walks in random environments, Theory of Probability and its Applications, 27 (1982), 247-258. |
[22] |
F. Solomon, Random walks in a random environment, Annals of Probability, 3 (1975), 1-31.doi: 10.1214/aop/1176996444. |
[23] |
M. Stenlund, A vector-valued almost sure invariance principle for Sinai billiards with random scatterers, Comm. Math. Phys., 325 (2014), 879-916, http://arxiv.org/abs/1210.0902.doi: 10.1007/s00220-013-1870-3. |
[24] |
A. S. Sznitman, Topics in random walks in random environment, in School and Conference on Probability Theory, ICTP Lecture Notes Series, Trieste, 17 (2004), 203-266. |
[25] |
O. Zeitouni, Random walks in random environment, in XXXI Summer School in Probability, St. Flour (2001). Lecture Notes in Mathematics, Springer, Berlin Heidelberg New York. 1837 (2004) 189-312.doi: 10.1007/978-3-540-39874-5_2. |