• Previous Article
    On parameter dependence of exponential stability of equilibrium solutions in differential equations with a single constant delay
  • DCDS Home
  • This Issue
  • Next Article
    On the Hollman McKenna conjecture: Interior concentration near curves
October  2016, 36(10): 5627-5655. doi: 10.3934/dcds.2016047

Exact multiplicity of stationary limiting problems of a cell polarization model

1. 

Center for PDE, East China Normal University, Minhang, Shanghai 200241, China

2. 

Department of Communication Engineering and Informatics, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan

3. 

Faculty of Engineering, University of Miyazaki, Miyazaki, 889-2192

4. 

Department of Applied Mathematics and Informatics, Ryukoku University, Seta, Otsu, Shiga 520-2194

Received  September 2015 Revised  December 2015 Published  July 2016

We show existence, nonexistence, and exact multiplicity for stationary limiting problems of a cell polarization model proposed by Y. Mori, A. Jilkine and L. Edelstein-Keshet. It is a nonlinear boundary value problem with total mass constraint. We obtain exact multiplicity results by investigating a global bifurcation sheet which we constructed by using complete elliptic integrals in a previous paper.
Citation: Tatsuki Mori, Kousuke Kuto, Tohru Tsujikawa, Shoji Yotsutani. Exact multiplicity of stationary limiting problems of a cell polarization model. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5627-5655. doi: 10.3934/dcds.2016047
References:
[1]

J. Carr, M. E. Gurtin and M. Semrod, Structured phase transitions on a finite interval, Arch. Rational Mech. Anal., 86 (1984), 317-351. doi: 10.1007/BF00280031.  Google Scholar

[2]

S. Kosugi Y. Morita and S. Yotsutani, Stationary solutions to the one-dimensional Cahn-Hilliard equation: Proof by the complete elliptic integrals, Discrete and Continuous Dynamical Systems, 19 (2007), 609-629. doi: 10.3934/dcds.2007.19.609.  Google Scholar

[3]

K. Kuto and T. Tsujikawa, Stationary patterns for an adsorbate-induced phase transition model I, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1105-1117. doi: 10.3934/dcdsb.2010.14.1105.  Google Scholar

[4]

K. Kuto and T. Tsujikawa, Stationary patterns for an adsorbate-induced phase transition model II, Nonlinearity, 26 (2013), 1313-1343. doi: 10.1088/0951-7715/26/5/1313.  Google Scholar

[5]

K. Kuto and T. Tsujikawa, Bifurcation structure of steady-states for bistable equations with nonlocal constraint, Discrete and Continuous Dynamical Systems Supplement, (2013), 467-476. doi: 10.3934/proc.2013.2013.467.  Google Scholar

[6]

Y. Lou, W.-M. Ni and S. Yotsutani, On a limiting system in the Lotka-Voltera competition with cross diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 435-458. doi: 10.3934/dcds.2004.10.435.  Google Scholar

[7]

T.Mori, K.Kuto, T.Tujikawa, M.Nagayama and S.Yotsutani, Global bifurcation sheet and diagrams of wave-pinning in a reaction-diffusion model for cell polarization, Dynamical Systems, Differential Equations and Applications AIMS Proceedings, 2015, 861-877. doi: 10.3934/proc.2015.0861.  Google Scholar

[8]

Y. Mori A. Jilkine and L. Edelstein-Keshet, Wave-pinning and cell polarity from a bistable reaction-diffusion system, Biophys J., 94 (2008), 3684-3697. Google Scholar

[9]

Y. Mori, A. Jilkine and L. Edelstein-Keshet, Asymptotic and bifurcation analysis of wave-pinning in a reaction-diffusion model for cell polarization, SIAM J. Appl. Math., 71 (2011), 1401-1427. doi: 10.1137/10079118X.  Google Scholar

[10]

J. Smoller, Shock Waves and Reaction Diffusion Equations, Springer, 1994. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[11]

J. Smoller and A. Wasserman, Global bifurcation of steady-state solutions, J. Differential Equations, 39 (1981), 269-290. doi: 10.1016/0022-0396(81)90077-2.  Google Scholar

show all references

References:
[1]

J. Carr, M. E. Gurtin and M. Semrod, Structured phase transitions on a finite interval, Arch. Rational Mech. Anal., 86 (1984), 317-351. doi: 10.1007/BF00280031.  Google Scholar

[2]

S. Kosugi Y. Morita and S. Yotsutani, Stationary solutions to the one-dimensional Cahn-Hilliard equation: Proof by the complete elliptic integrals, Discrete and Continuous Dynamical Systems, 19 (2007), 609-629. doi: 10.3934/dcds.2007.19.609.  Google Scholar

[3]

K. Kuto and T. Tsujikawa, Stationary patterns for an adsorbate-induced phase transition model I, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1105-1117. doi: 10.3934/dcdsb.2010.14.1105.  Google Scholar

[4]

K. Kuto and T. Tsujikawa, Stationary patterns for an adsorbate-induced phase transition model II, Nonlinearity, 26 (2013), 1313-1343. doi: 10.1088/0951-7715/26/5/1313.  Google Scholar

[5]

K. Kuto and T. Tsujikawa, Bifurcation structure of steady-states for bistable equations with nonlocal constraint, Discrete and Continuous Dynamical Systems Supplement, (2013), 467-476. doi: 10.3934/proc.2013.2013.467.  Google Scholar

[6]

Y. Lou, W.-M. Ni and S. Yotsutani, On a limiting system in the Lotka-Voltera competition with cross diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 435-458. doi: 10.3934/dcds.2004.10.435.  Google Scholar

[7]

T.Mori, K.Kuto, T.Tujikawa, M.Nagayama and S.Yotsutani, Global bifurcation sheet and diagrams of wave-pinning in a reaction-diffusion model for cell polarization, Dynamical Systems, Differential Equations and Applications AIMS Proceedings, 2015, 861-877. doi: 10.3934/proc.2015.0861.  Google Scholar

[8]

Y. Mori A. Jilkine and L. Edelstein-Keshet, Wave-pinning and cell polarity from a bistable reaction-diffusion system, Biophys J., 94 (2008), 3684-3697. Google Scholar

[9]

Y. Mori, A. Jilkine and L. Edelstein-Keshet, Asymptotic and bifurcation analysis of wave-pinning in a reaction-diffusion model for cell polarization, SIAM J. Appl. Math., 71 (2011), 1401-1427. doi: 10.1137/10079118X.  Google Scholar

[10]

J. Smoller, Shock Waves and Reaction Diffusion Equations, Springer, 1994. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[11]

J. Smoller and A. Wasserman, Global bifurcation of steady-state solutions, J. Differential Equations, 39 (1981), 269-290. doi: 10.1016/0022-0396(81)90077-2.  Google Scholar

[1]

Keng Deng. On a nonlocal reaction-diffusion population model. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 65-73. doi: 10.3934/dcdsb.2008.9.65

[2]

Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024

[3]

Meng Zhao, Wantong Li, Yihong Du. The effect of nonlocal reaction in an epidemic model with nonlocal diffusion and free boundaries. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4599-4620. doi: 10.3934/cpaa.2020208

[4]

Xiaoli Wang, Guohong Zhang. Bifurcation analysis of a general activator-inhibitor model with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4459-4477. doi: 10.3934/dcdsb.2020295

[5]

Xiao Wu, Mingkang Ni. Solution of contrast structure type for a reaction-diffusion equation with discontinuous reactive term. Discrete & Continuous Dynamical Systems - S, 2021, 14 (9) : 3249-3266. doi: 10.3934/dcdss.2020341

[6]

Jia-Feng Cao, Wan-Tong Li, Meng Zhao. On a free boundary problem for a nonlocal reaction-diffusion model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4117-4139. doi: 10.3934/dcdsb.2018128

[7]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[8]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 4867-4885. doi: 10.3934/dcdsb.2020316

[9]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[10]

Shiwen Niu, Hongmei Cheng, Rong Yuan. A free boundary problem of some modified Leslie-Gower predator-prey model with nonlocal diffusion term. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021129

[11]

W. E. Fitzgibbon, J. J. Morgan. Analysis of a reaction diffusion model for a reservoir supported spread of infectious disease. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6239-6259. doi: 10.3934/dcdsb.2019137

[12]

Lianzhang Bao, Zhengfang Zhou. Traveling wave solutions for a one dimensional model of cell-to-cell adhesion and diffusion with monostable reaction term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 395-412. doi: 10.3934/dcdss.2017019

[13]

Tatsuki Mori, Kousuke Kuto, Masaharu Nagayama, Tohru Tsujikawa, Shoji Yotsutani. Global bifurcation sheet and diagrams of wave-pinning in a reaction-diffusion model for cell polarization. Conference Publications, 2015, 2015 (special) : 861-877. doi: 10.3934/proc.2015.0861

[14]

Yuxiao Guo, Ben Niu. Bautin bifurcation in delayed reaction-diffusion systems with application to the segel-jackson model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6005-6024. doi: 10.3934/dcdsb.2019118

[15]

Stanisław Migórski, Shengda Zeng. The Rothe method for multi-term time fractional integral diffusion equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 719-735. doi: 10.3934/dcdsb.2018204

[16]

Huimin Liang, Peixuan Weng, Yanling Tian. Threshold asymptotic behaviors for a delayed nonlocal reaction-diffusion model of mistletoes and birds in a 2D strip. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1471-1495. doi: 10.3934/cpaa.2016.15.1471

[17]

Michele V. Bartuccelli, S.A. Gourley, Y. Kyrychko. Comparison and convergence to equilibrium in a nonlocal delayed reaction-diffusion model on an infinite domain. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 1015-1026. doi: 10.3934/dcdsb.2005.5.1015

[18]

Joaquin Riviera, Yi Li. Existence of traveling wave solutions for a nonlocal reaction-diffusion model of influenza a drift. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 157-174. doi: 10.3934/dcdsb.2010.13.157

[19]

Imen Manoubi. Theoretical and numerical analysis of the decay rate of solutions to a water wave model with a nonlocal viscous dispersive term with Riemann-Liouville half derivative. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2837-2863. doi: 10.3934/dcdsb.2014.19.2837

[20]

Matthieu Alfaro, Jérôme Coville, Gaël Raoul. Bistable travelling waves for nonlocal reaction diffusion equations. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 1775-1791. doi: 10.3934/dcds.2014.34.1775

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (113)
  • HTML views (0)
  • Cited by (3)

[Back to Top]