-
Previous Article
On parameter dependence of exponential stability of equilibrium solutions in differential equations with a single constant delay
- DCDS Home
- This Issue
-
Next Article
On the Hollman McKenna conjecture: Interior concentration near curves
Exact multiplicity of stationary limiting problems of a cell polarization model
1. | Center for PDE, East China Normal University, Minhang, Shanghai 200241, China |
2. | Department of Communication Engineering and Informatics, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan |
3. | Faculty of Engineering, University of Miyazaki, Miyazaki, 889-2192 |
4. | Department of Applied Mathematics and Informatics, Ryukoku University, Seta, Otsu, Shiga 520-2194 |
References:
[1] |
J. Carr, M. E. Gurtin and M. Semrod, Structured phase transitions on a finite interval, Arch. Rational Mech. Anal., 86 (1984), 317-351.
doi: 10.1007/BF00280031. |
[2] |
S. Kosugi Y. Morita and S. Yotsutani, Stationary solutions to the one-dimensional Cahn-Hilliard equation: Proof by the complete elliptic integrals, Discrete and Continuous Dynamical Systems, 19 (2007), 609-629.
doi: 10.3934/dcds.2007.19.609. |
[3] |
K. Kuto and T. Tsujikawa, Stationary patterns for an adsorbate-induced phase transition model I, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1105-1117.
doi: 10.3934/dcdsb.2010.14.1105. |
[4] |
K. Kuto and T. Tsujikawa, Stationary patterns for an adsorbate-induced phase transition model II, Nonlinearity, 26 (2013), 1313-1343.
doi: 10.1088/0951-7715/26/5/1313. |
[5] |
K. Kuto and T. Tsujikawa, Bifurcation structure of steady-states for bistable equations with nonlocal constraint, Discrete and Continuous Dynamical Systems Supplement, (2013), 467-476.
doi: 10.3934/proc.2013.2013.467. |
[6] |
Y. Lou, W.-M. Ni and S. Yotsutani, On a limiting system in the Lotka-Voltera competition with cross diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 435-458.
doi: 10.3934/dcds.2004.10.435. |
[7] |
T.Mori, K.Kuto, T.Tujikawa, M.Nagayama and S.Yotsutani, Global bifurcation sheet and diagrams of wave-pinning in a reaction-diffusion model for cell polarization, Dynamical Systems, Differential Equations and Applications AIMS Proceedings, 2015, 861-877.
doi: 10.3934/proc.2015.0861. |
[8] |
Y. Mori A. Jilkine and L. Edelstein-Keshet, Wave-pinning and cell polarity from a bistable reaction-diffusion system, Biophys J., 94 (2008), 3684-3697. |
[9] |
Y. Mori, A. Jilkine and L. Edelstein-Keshet, Asymptotic and bifurcation analysis of wave-pinning in a reaction-diffusion model for cell polarization, SIAM J. Appl. Math., 71 (2011), 1401-1427.
doi: 10.1137/10079118X. |
[10] |
J. Smoller, Shock Waves and Reaction Diffusion Equations, Springer, 1994.
doi: 10.1007/978-1-4612-0873-0. |
[11] |
J. Smoller and A. Wasserman, Global bifurcation of steady-state solutions, J. Differential Equations, 39 (1981), 269-290.
doi: 10.1016/0022-0396(81)90077-2. |
show all references
References:
[1] |
J. Carr, M. E. Gurtin and M. Semrod, Structured phase transitions on a finite interval, Arch. Rational Mech. Anal., 86 (1984), 317-351.
doi: 10.1007/BF00280031. |
[2] |
S. Kosugi Y. Morita and S. Yotsutani, Stationary solutions to the one-dimensional Cahn-Hilliard equation: Proof by the complete elliptic integrals, Discrete and Continuous Dynamical Systems, 19 (2007), 609-629.
doi: 10.3934/dcds.2007.19.609. |
[3] |
K. Kuto and T. Tsujikawa, Stationary patterns for an adsorbate-induced phase transition model I, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1105-1117.
doi: 10.3934/dcdsb.2010.14.1105. |
[4] |
K. Kuto and T. Tsujikawa, Stationary patterns for an adsorbate-induced phase transition model II, Nonlinearity, 26 (2013), 1313-1343.
doi: 10.1088/0951-7715/26/5/1313. |
[5] |
K. Kuto and T. Tsujikawa, Bifurcation structure of steady-states for bistable equations with nonlocal constraint, Discrete and Continuous Dynamical Systems Supplement, (2013), 467-476.
doi: 10.3934/proc.2013.2013.467. |
[6] |
Y. Lou, W.-M. Ni and S. Yotsutani, On a limiting system in the Lotka-Voltera competition with cross diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 435-458.
doi: 10.3934/dcds.2004.10.435. |
[7] |
T.Mori, K.Kuto, T.Tujikawa, M.Nagayama and S.Yotsutani, Global bifurcation sheet and diagrams of wave-pinning in a reaction-diffusion model for cell polarization, Dynamical Systems, Differential Equations and Applications AIMS Proceedings, 2015, 861-877.
doi: 10.3934/proc.2015.0861. |
[8] |
Y. Mori A. Jilkine and L. Edelstein-Keshet, Wave-pinning and cell polarity from a bistable reaction-diffusion system, Biophys J., 94 (2008), 3684-3697. |
[9] |
Y. Mori, A. Jilkine and L. Edelstein-Keshet, Asymptotic and bifurcation analysis of wave-pinning in a reaction-diffusion model for cell polarization, SIAM J. Appl. Math., 71 (2011), 1401-1427.
doi: 10.1137/10079118X. |
[10] |
J. Smoller, Shock Waves and Reaction Diffusion Equations, Springer, 1994.
doi: 10.1007/978-1-4612-0873-0. |
[11] |
J. Smoller and A. Wasserman, Global bifurcation of steady-state solutions, J. Differential Equations, 39 (1981), 269-290.
doi: 10.1016/0022-0396(81)90077-2. |
[1] |
Keng Deng. On a nonlocal reaction-diffusion population model. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 65-73. doi: 10.3934/dcdsb.2008.9.65 |
[2] |
Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, 2021, 29 (5) : 3017-3030. doi: 10.3934/era.2021024 |
[3] |
Meng Zhao, Wantong Li, Yihong Du. The effect of nonlocal reaction in an epidemic model with nonlocal diffusion and free boundaries. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4599-4620. doi: 10.3934/cpaa.2020208 |
[4] |
Xiaoli Wang, Guohong Zhang. Bifurcation analysis of a general activator-inhibitor model with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4459-4477. doi: 10.3934/dcdsb.2020295 |
[5] |
Anton S. Zadorin. Exact travelling solution for a reaction-diffusion system with a piecewise constant production supported by a codimension-1 subspace. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1567-1580. doi: 10.3934/cpaa.2022030 |
[6] |
Xiao Wu, Mingkang Ni. Solution of contrast structure type for a reaction-diffusion equation with discontinuous reactive term. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3249-3266. doi: 10.3934/dcdss.2020341 |
[7] |
Jia-Feng Cao, Wan-Tong Li, Meng Zhao. On a free boundary problem for a nonlocal reaction-diffusion model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4117-4139. doi: 10.3934/dcdsb.2018128 |
[8] |
Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057 |
[9] |
Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4867-4885. doi: 10.3934/dcdsb.2020316 |
[10] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[11] |
W. E. Fitzgibbon, J. J. Morgan. Analysis of a reaction diffusion model for a reservoir supported spread of infectious disease. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6239-6259. doi: 10.3934/dcdsb.2019137 |
[12] |
Shiwen Niu, Hongmei Cheng, Rong Yuan. A free boundary problem of some modified Leslie-Gower predator-prey model with nonlocal diffusion term. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2189-2219. doi: 10.3934/dcdsb.2021129 |
[13] |
Lianzhang Bao, Zhengfang Zhou. Traveling wave solutions for a one dimensional model of cell-to-cell adhesion and diffusion with monostable reaction term. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 395-412. doi: 10.3934/dcdss.2017019 |
[14] |
Costică Moroşanu, Bianca Satco. Qualitative and quantitative analysis for a nonlocal and nonlinear reaction-diffusion problem with in-homogeneous Neumann boundary conditions. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022042 |
[15] |
Tatsuki Mori, Kousuke Kuto, Masaharu Nagayama, Tohru Tsujikawa, Shoji Yotsutani. Global bifurcation sheet and diagrams of wave-pinning in a reaction-diffusion model for cell polarization. Conference Publications, 2015, 2015 (special) : 861-877. doi: 10.3934/proc.2015.0861 |
[16] |
Yuxiao Guo, Ben Niu. Bautin bifurcation in delayed reaction-diffusion systems with application to the segel-jackson model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6005-6024. doi: 10.3934/dcdsb.2019118 |
[17] |
Lucio Boccardo, Luigi Orsina. Elliptic systems with nonlinear diffusion and a convection term. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022056 |
[18] |
Stanisław Migórski, Shengda Zeng. The Rothe method for multi-term time fractional integral diffusion equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 719-735. doi: 10.3934/dcdsb.2018204 |
[19] |
Huimin Liang, Peixuan Weng, Yanling Tian. Threshold asymptotic behaviors for a delayed nonlocal reaction-diffusion model of mistletoes and birds in a 2D strip. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1471-1495. doi: 10.3934/cpaa.2016.15.1471 |
[20] |
Michele V. Bartuccelli, S.A. Gourley, Y. Kyrychko. Comparison and convergence to equilibrium in a nonlocal delayed reaction-diffusion model on an infinite domain. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 1015-1026. doi: 10.3934/dcdsb.2005.5.1015 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]