Advanced Search
Article Contents
Article Contents

On parameter dependence of exponential stability of equilibrium solutions in differential equations with a single constant delay

Abstract Related Papers Cited by
  • A transcendental equation $\lambda + \alpha - \beta\mathrm{e}^{-\lambda\tau} = 0$ with complex coefficients is investigated. This equation can be obtained from the characteristic equation of a linear differential equation with a single constant delay. It is known that the set of roots of this equation can be expressed by the Lambert W function. We analyze the condition on parameters for which all the roots have negative real parts by using the ``graph-like'' expression of the W function. We apply the obtained results to the stabilization of an unstable equilibrium solution by the delayed feedback control and the stability condition of the synchronous state in oscillator networks.
    Mathematics Subject Classification: Primary: 34K20, 34K25; Secondary: 93C23.


    \begin{equation} \\ \end{equation}
  • [1]

    K. L. Cooke and Z. Grossman, Discrete delay, distributed delay and stability switches, J. Math. Anal. Appl., 86 (1982), 592-627.doi: 10.1016/0022-247X(82)90243-8.


    R. M. Corless and D. J. Jeffrey, The Wright $\omega$ function, Lecture Notes in Comput. Sci., 2385 (2002), Springer, Berlin, 76-89.doi: 10.1007/3-540-45470-5_10.


    R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, On the Lambert $W$ function, Adv. Comput. Math., 5 (1996), 329-359.doi: 10.1007/BF02124750.


    O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther, Delay equations. Functional, Complex, and Nonlinear Analysis, Springer-Verlag, New York, 1995.doi: 10.1007/978-1-4612-4206-2.


    M. G. Earl and S. H. Strogatz, Synchronization in oscillator networks with delayed coupling: A stability criterion, Phy. Rev. E, 67 (2003), 036204.doi: 10.1103/PhysRevE.67.036204.


    B. Fiedler, V. Flunkert, M. Georgi, P. Hövel and E. Schöll, Refuting the odd-number limitation of time-delayed feedback control, Phys. Rev. Lett., 98 (2007), 114101.doi: 10.1103/PhysRevLett.98.114101.


    N. D. Hayes, Roots of the transcendental equation associated with a certain differential-difference equation, J. London Math. Soc., 25 (1950), 226-232.


    R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.doi: 10.1017/CBO9780511810817.


    P. Hövel and E. Schöll, Control of unstable steady states by time-delayed feedback methods, Phy. Rev. E, 72 (2005), 046203.


    H. Kokame, K. Hirata, K. Konishi and T. Mori, State difference feedback for stabilizing uncertain steady states of non-linear systems, Internat. J. Control, 74 (2001), 537-546.doi: 10.1080/00207170010017275.


    H. Matsunaga, Delay-dependent and delay-independent stability criteria for a delay differential system, Proc. Amer. Math. Soc., 136 (2008), 4305-4312.doi: 10.1090/S0002-9939-08-09396-9.


    K. Pyragas, Continuous control of chaos by self-controlling feedback, Controlling chaos: Theoretical and practical methods in non-linear dynamics, (1996), 118-123.doi: 10.1016/B978-012396840-1/50038-2.


    H. Shinozaki and T. Mori, Robust stability analysis of linear time-delay systems by Lambert $W$ function: Some extreme point results, Automatica, 42 (2006), 1791-1799.doi: 10.1016/j.automatica.2006.05.008.


    G. Stépán, Retarded Dynamical Systems: Stability and Characteristic Functions, Longman Scientific & Technical, Harlow, 1989.


    J. Wei and C. Zhang, Stability analysis in a first-order complex differential equations with delay, Nonlinear Anal., 59 (2004), 657-671.doi: 10.1016/j.na.2004.07.027.


    E. M. Wright, Solution of the equation $z e^z = a$, Bull. Amer. Math. Soc., 65 (1959), 89-93.doi: 10.1090/S0002-9904-1959-10290-1.

  • 加载中

Article Metrics

HTML views() PDF downloads(261) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint