\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Averaging method applied to the three-dimensional primitive equations

Abstract Related Papers Cited by
  • In this article we study the small Rossby number asymptotics for the three-dimensional primitive equations of the oceans and of the atmosphere. The fast oscillations present in the exact solution are eliminated using an averaging method, the so-called renormalisation group method.
    Mathematics Subject Classification: 35C20, 35Q35, 76D03, 76D50.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Bartello, Geostrophic adjustment and inverse cascades in rotating stratified turbulence, J. Atmos. Sci., 52 (1995), 4410-4428.doi: 10.1175/1520-0469(1995)052<4410:GAAICI>2.0.CO;2.

    [2]

    A. Babin, A. Mahalov and B. Nicolaenko, On the regularity of three-dimensional rotating Euler-Boussinesq equations, Math. Models and Methods in Appl. Sci., 9 (1999), 1089-1121.doi: 10.1142/S021820259900049X.

    [3]

    A. Babin, A. Mahalov and B. Nicolaenko, Fast singular oscillating limits and global regularity for the 3d primitive equations of geophysics, M2AN, 34 (2000), 201-222.doi: 10.1051/m2an:2000138.

    [4]

    A. Babin, A. Mahalov and B. Nicolaenko, 3d Navier-Stokes and Euler equations with initial data characterized by uniformly large velocity, Indiana Univ. Math. J., 50 (2001), 1-35.doi: 10.1512/iumj.2001.50.2155.

    [5]

    A. Babin, A. Mahalov and B. Nicolaenko, Fast singular oscillating limits of stably-stratified three-dimensional Euler-Boussinesq equations and ageostrophic wave fronts, Large-scale atmosphere-ocean dynamics I, J. Norbury and I. Roulstone eds., Cambridge University Press, (2002), 126-201.doi: 10.1017/CBO9780511549991.005.

    [6]

    L. Y. Chen, N. Goldenfeld and Y. Oono, Renormalization group theory for global asymptotics analysis, Phys. Rev. Lett., 73 (1994), 1311-1315.doi: 10.1103/PhysRevLett.73.1311.

    [7]

    J. Y. Chemin, A propos d'un problème de pénalisation de type antisymmétrique, J. Math. pures et appl., 76 (1997), 739-755.doi: 10.1016/S0021-7824(97)89967-9.

    [8]

    C. Cao and E. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Annals of Mathematics, 166 (2007), 245-267.doi: 10.4007/annals.2007.166.245.

    [9]

    P. F. Embid and A. J. Majda, Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity, Comm. P.D.E., 21 (1996), 619-658.doi: 10.1080/03605309608821200.

    [10]

    I. Gallagher, Existence globale pour des Equations des fluides géostrophiques, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 623-626.doi: 10.1016/S0764-4442(97)84772-6.

    [11]

    I. Gallagher, Applications of Schochet's methods to parabolic equations, J. Math. Pures Appl. (9), 77 (1998), 989-1054.doi: 10.1016/S0021-7824(99)80002-6.

    [12]

    E. Grenier, Rotating fluids and inertial waves, C. R. Acad. Sci. Paris Sér. I Math., 321 (1995), 711-714.

    [13]

    G. Kobelkov, Existence of a solution 'in the large' for the 3D large-scale ocean dynamics equations, C. R. Math. Acad. Sci. Paris, 343 (2006), 283-286.doi: 10.1016/j.crma.2006.04.020.

    [14]

    J. L. Lions, R. Temam and S. Wang, New formulations of the primitive equations of the atmosphere and applications, Nonlinearity, 5 (1992), 237-288.doi: 10.1088/0951-7715/5/2/001.

    [15]

    I. Moise and R. Temam, Renormalization Group Method. Application to Navier-Stokes Equation, Discrete and Continuous Dynamical Systems, 6 (2000), 191-210.

    [16]

    I. Moise, R. Temam and M. Ziane, Asymptotic analysis of the Navier-Stokes equations in thin domains, Topological Methods in Nonlinear Analysis, volume dedicated to O.A. Ladyzhenskaya, 10 (1997), 249-282.

    [17]

    I. Moise and M. Ziane, Renormalization group method. Applications to partial differential equations, J. Dyn. and Diff. Syst., 13 (2001), 275-321.doi: 10.1023/A:1016680007953.

    [18]

    M. Petcu, On the three dimensional primitive equations, Adv. Diff. Eq., 11 (2006), 1201-1226.

    [19]

    M. Petcu, R. Temam and D. Wirosoetisno, Renormalization group method applied to the primitive equations, J. Diff. Eq., 208 (2005), 215-257.doi: 10.1016/j.jde.2003.10.011.

    [20]

    M. Petcu and D. Wirosoetisno, Sobolev and Gevrey regularity for the primitive equations in a space dimension 3, Appl. Anal., 84 (2005), 769-788.doi: 10.1080/00036810500130745.

    [21]

    S. Schochet, The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit, Comm. Math. Phys., 104 (1986), 49-75.doi: 10.1007/BF01210792.

    [22]

    S. Schochet, Asymptotics for symmetric hyperbolic systems with a large parameter, J. Diff. Eq., 75 (1988), 1-27.doi: 10.1016/0022-0396(88)90126-X.

    [23]

    S. Schochet, Fast singular limit of hyperbolic PDEs, J. Diff. Eq., 114 (1994), 476-512.doi: 10.1006/jdeq.1994.1157.

    [24]

    R. Temam and D. Wirosoetisno, Averaging of differential equations generating oscillations and an application to control, Applied Math. and Optimization, 46 (2002), 313-330.doi: 10.1007/s00245-002-0749-z.

    [25]

    R. Temam and D. Wirosoetisno, On the solutions of the renormalized equations at all orders, Advances in Differential Equations, 8 (2003), 1005-1024.

    [26]

    R. Temam and D. Wirosoetisno, Exponential Approximations for the Primitive Equations of the ocean, in Discrete and Continuous Dynamical Systems-Series B, 7 (2007), 425-440.

    [27]

    R. Temam and D. Wirosoetisno, Stability of the slow manifold in the primitive equations, SIAM J. Math. Anal., 42 (2010), 427-458.doi: 10.1137/080733358.

    [28]

    R. Temam and D. Wirosoetisno, Slow manifolds and invariant sets of the primitive equations, J. Atmospheric Sciences, 68 (2011), 675-682.doi: 10.1175/2010JAS3650.1.

    [29]

    R. Temam and M. Ziane, Navier-Stokes equations in three-dimensional thin domains with various boundary conditions, Advances in Differential Equations, 1 (1996), 499-546.

    [30]

    R. Temam and M. Ziane, Navier-Stokes equations in thin spherical domains, Contemporary Mathematics, AMS, 209 (1997), 281-314.doi: 10.1090/conm/209/02772.

    [31]

    R. Temam and M. Ziane, Some mathematical problems in geophysical fluid dynamics, in Handbook of Mathematical Fluid Dynamics, 3, S. Friedlander and D. Serre Editors, Elsevier, (2004), 535-657.

    [32]

    M. Ziane, On a certain renormalization group method, J. Math. Phys., 41 (2000), 3290-3299.doi: 10.1063/1.533307.

    [33]

    M. Ziane, Regularity results for the stationary primitive equations of the atmosphere and the ocean, Nonlinear Analysis, Theory, Methods and Applications, 28 (1997), 289-313.doi: 10.1016/0362-546X(95)00154-N.

    [34]

    M. Ziane, Regularity results for a Stokes type system, Applicable Analysis, 58 (1995), 263-293.doi: 10.1080/00036819508840376.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(160) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return