Citation: |
[1] |
V. S. Azarin, Generalization of a theorem of Hayman's on a subharmonic function in an $n$-dimensional cone (Russian), Mat. Sb. (N.S.), 108 (1965), 248-264. |
[2] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001. |
[3] |
N. V. Govorov and M. I. Zhuravleva, On an upper bound of the module of a function analytic in a half-plane and in a plane with a cut (Russian), Izv. Severo-Kavkaz. Nauchn. Tsentra Vyssh. Shkoly Estestv. Nauk., 4 (1973), 102-103. |
[4] |
P. Hartman, Ordinary Differential Equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. |
[5] |
A. I. Kheyfits, Growth of Schrödingerian subharmonic functions admitting certain lower bounds, Advances in Harmonic Analysis and Operator Theory, Oper. Theory, Adv. Appl., 229 (2013), 215-231.doi: 10.1007/978-3-0348-0516-2_12. |
[6] |
I. F. Krasičkov-Ternovskiĭ, Estimates for the subharmonic difference of subharmonic functions. II, Math. USSR-Sb., 32 (1977), 32-59. |
[7] |
B. Ya. Levin, Lectures on Entire Functions, Translations of Mathematical Monographs, vol. 150, American Mathematical Society, Providence, RI, 1996. |
[8] |
B. Ya. Levin and A. I. Kheyfits, Asymptotic behavior of subfunctions of time-independent Schrödinger operator, in Some Topics on Value Distribution and Differentiability in Complex and P-adic Analysis (eds. A. Escassut, W. Tutschke and C. C. Yang), Science Press, 11 (2008), 323-397. |
[9] |
N. K. Nikol'skiĭ, Selected Problems of the Weighted Approximation and Spectral Analysis, American Mathematical Society, Providence, R.I., 1976. |
[10] |
L. Qiao, Integral representations for harmonic functions of infinite order in a cone, Results Math., 61 (2012), 63-74.doi: 10.1007/s00025-010-0076-7. |
[11] |
L. Qiao and G. Deng, A theorem of Phragmén-Lindelöf type for subfunctions in a cone, Glasg. Math. J., 53 (2011), 599-610.doi: 10.1017/S0017089511000164. |
[12] |
L. Qiao and G. Pan, Integral representations of generalized harmonic functions, Taiwanese J. Math., 17 (2013), 1503-1521. |
[13] |
L. Qiao and G. Pan, Lower-bound estimates for a class of harmonic functions and applications to Masaev's Type theorem, Bull. Sci. Math., 140 (2016), 70-85.doi: 10.1016/j.bulsci.2015.02.005. |
[14] |
L. Qiao and Y. Ren, Integral representations for the solutions of infinite order of the stationary Schrödinger equation in a cone, Monats. Math., 173 (2014), 593-603.doi: 10.1007/s00605-013-0506-1. |
[15] |
A. Yu. Rashkovskiĭ and L. I. Ronkin, Subharmonic functions of finite order in a cone. I. General theory, (Russian) Teor. Funktsiĭ Funktsional. Anal. i Prilozhen., 54 (1990), 74-89.doi: 10.1007/BF01097287. |
[16] |
B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.), 7 (1982), 447-526.doi: 10.1090/S0273-0979-1982-15041-8. |
[17] |
G. M. Verzhbinskiĭ and V. G. Maz'ya, Asymptotic behavior of the solutions of second order elliptic equations near the boundary. I. (Russian), Sibirsk. Mat. Ž., 12 (1971), 1217-1249. |
[18] |
Y. Zhang, G. Deng and K. Kou, On the lower bound for a class of harmonic functions in the half space, Acta Math. Sci. Ser. B Engl. Ed., 32 (2012), 1487-1494.doi: 10.1016/S0252-9602(12)60117-9. |