Advanced Search
Article Contents
Article Contents

Remarks on nondegeneracy of ground states for quasilinear Schrödinger equations

Abstract Related Papers Cited by
  • In this paper, we answer affirmatively the problem proposed by A. Selvitella in his work "Nondegeneracy of the ground state for quasilinear Schrödinger equations" (see Calc. Var. Partial Differential Equations, 53 (2015), 349-364): every ground state of the quasilinear Schrödinger equation \begin{eqnarray*}-\Delta u-u\Delta |u|^2+\omega u-|u|^{p-1}u=0&&\text{in }\mathbb{R}^N\end{eqnarray*} is nondegenerate for $1< p <3$, where $\omega > 0$ is a given constant and $N \ge1$.
    Mathematics Subject Classification: Primary: 35J62, 35Q55; Secondary: 35J60.


    \begin{equation} \\ \end{equation}
  • [1]

    A. Ambrosetti and A. Malchiodi, Perturbation Methods and Semilinear Elliptic Problems on $\mathbfR^n$, Progress in Mathematics, 240. Birkhäuser Verlag, Basel, 2006.


    S.-M. Chang, S. Gustafson, K. Nakanishi and T.-P. Tsai, Spectra of linearized operators for NLS solitary waves, SIAM J. Math. Anal., 39 (2007/08), 1070-1111. doi: 10.1137/050648389.


    M. Colin, On the local well-posedness of quasilinear Schrödinger equations in arbitrary space dimension, Comm. Partial Differ. Equ., 27 (2002), 325-354.doi: 10.1081/PDE-120002789.


    M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Anal., 56 (2004), 213-226.doi: 10.1016/j.na.2003.09.008.


    M. Colin, L. Jeanjean and M. Squassina, Stability and instability results for standing waves of quasi-linear Schrödinger equations, Nonlinearity, 23 (2010), 1353-1385.doi: 10.1088/0951-7715/23/6/006.


    R. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $\mathbbR$, Acta Math., 210 (2013), 261-318.doi: 10.1007/s11511-013-0095-9.


    R. Frank, E. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., (2015).doi: 10.1002/cpa.21591.


    B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbfR^n$, in Mathematical analysis and applications, Part A, pp. 369-402, Adv. in Math. Suppl. Stud., 7a, Academic Press, New York-London, 1981.


    Q. Han and F.-H. Lin, Elliptic Partial Differential Equations, Courant Lecture Notes in Mathematics, 1. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2011.


    P. D. Hislop and I. M. Sigal, Introduction to Spectral Theory. With Applications to Schrödinger Operators, Applied Mathematical Sciences, 113. Springer-Verlag, New York, 1996.doi: 10.1007/978-1-4612-0741-2.


    C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for quasi-linear Schrödinger equations, Invent. Math., 158 (2004), 343-388.doi: 10.1007/s00222-004-0373-4.


    M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbfR^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266.doi: 10.1007/BF00251502.


    H. Lange, M. Poppenberg and H. Teismann, Nash-Moser methods for the solution of quasi-linear Schrödinger equations, Comm. Partial Differ. Equ., 24 (1999), 1399-1418.doi: 10.1080/03605309908821469.


    R. S. LaugesenSpectral Theory of Partial Differential Equations - Lecture Notes, preprint, arXiv:1203.2344.


    E. Lenzmann, Uniqueness of ground states for pseudorelativistic Hartree equations, Anal. PDE, 2 (2009), 1-27.doi: 10.2140/apde.2009.2.1.


    E. H. Lieb and M. LossAnalysis, $2^{nd}$ edition, Graduate Studies in Mathematics, Vol. 14 (Amer. Math. Soc.,2001). doi: 10.1090/gsm/014.


    J.-Q. Liu and Z.-Q. Wang, Solitons solutions for quasi-linear Schrödinger equations, I, Proc. Am. Math. Soc., 131 (2003), 441-448.doi: 10.1090/S0002-9939-02-06783-7.


    J.-Q. Liu, Y.-Q. Wang and Z.-Q. Wang, Soliton solutions for quasi-linear Schrödinger equations II, J. Differ. Equ., 187 (2003), 473-493.doi: 10.1016/S0022-0396(02)00064-5.


    J.-Q. Liu, Y.-Q. Wang and Z.-Q. Wang, Solutions for quasi-linear Schrödinger equations via the Nehari method, Comm. Partial Differ. Equ., 29 (2004), 879-901.doi: 10.1081/PDE-120037335.


    A. Pankov, Introduction to Spectral Theory of Schrödinger Operators, Vinnitsa State Pedagogical University, 2006.


    M. Poppenberg, On the local well posedness of quasi-linear Schrödinger equations in arbitrary space dimension, J. Differ. Equ., 172 (2001), 83-115.doi: 10.1006/jdeq.2000.3853.


    M. Poppenberg, K. Schmitt and Z.-Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differ. Equ., 14 (2002), 329-344.doi: 10.1007/s005260100105.


    A. Selvitella, Uniqueness and nondegeneracy of the ground state for a quasilinear Schrödinger equation with a small parameter, Nonlinear Anal., 74 (2011), 1731-1737.doi: 10.1016/j.na.2010.10.045.


    A. Selvitella, Nondegeneracy of the ground state for quasilinear Schrödinger equations, Calc. Var. Partial Differ. Equ., 53 (2015), 349-364.doi: 10.1007/s00526-014-0751-8.


    W. P. Ziemer, Weakly Differentiable Functions, Graduate Texts in Mathematics, 120. Springer-Verlag, New York, 1989.doi: 10.1007/978-1-4612-1015-3.

  • 加载中

Article Metrics

HTML views() PDF downloads(163) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint