October  2016, 36(10): 5789-5800. doi: 10.3934/dcds.2016054

Remarks on nondegeneracy of ground states for quasilinear Schrödinger equations

1. 

University of Jyvaskyla, Department of Mathematics and Statistics, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland

Received  September 2015 Revised  March 2016 Published  July 2016

In this paper, we answer affirmatively the problem proposed by A. Selvitella in his work "Nondegeneracy of the ground state for quasilinear Schrödinger equations" (see Calc. Var. Partial Differential Equations, 53 (2015), 349-364): every ground state of the quasilinear Schrödinger equation \begin{eqnarray*}-\Delta u-u\Delta |u|^2+\omega u-|u|^{p-1}u=0&&\text{in }\mathbb{R}^N\end{eqnarray*} is nondegenerate for $1< p <3$, where $\omega > 0$ is a given constant and $N \ge1$.
Citation: Chang-Lin Xiang. Remarks on nondegeneracy of ground states for quasilinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5789-5800. doi: 10.3934/dcds.2016054
References:
[1]

A. Ambrosetti and A. Malchiodi, Perturbation Methods and Semilinear Elliptic Problems on $\mathbfR^n$, Progress in Mathematics, 240. Birkhäuser Verlag, Basel, 2006.

[2]

S.-M. Chang, S. Gustafson, K. Nakanishi and T.-P. Tsai, Spectra of linearized operators for NLS solitary waves,, SIAM J. Math. Anal., 39 (): 1070.  doi: 10.1137/050648389.

[3]

M. Colin, On the local well-posedness of quasilinear Schrödinger equations in arbitrary space dimension, Comm. Partial Differ. Equ., 27 (2002), 325-354. doi: 10.1081/PDE-120002789.

[4]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Anal., 56 (2004), 213-226. doi: 10.1016/j.na.2003.09.008.

[5]

M. Colin, L. Jeanjean and M. Squassina, Stability and instability results for standing waves of quasi-linear Schrödinger equations, Nonlinearity, 23 (2010), 1353-1385. doi: 10.1088/0951-7715/23/6/006.

[6]

R. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $\mathbbR$, Acta Math., 210 (2013), 261-318. doi: 10.1007/s11511-013-0095-9.

[7]

R. Frank, E. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., (2015). doi: 10.1002/cpa.21591.

[8]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbfR^n$, in Mathematical analysis and applications, Part A, pp. 369-402, Adv. in Math. Suppl. Stud., 7a, Academic Press, New York-London, 1981.

[9]

Q. Han and F.-H. Lin, Elliptic Partial Differential Equations, Courant Lecture Notes in Mathematics, 1. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2011.

[10]

P. D. Hislop and I. M. Sigal, Introduction to Spectral Theory. With Applications to Schrödinger Operators, Applied Mathematical Sciences, 113. Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-0741-2.

[11]

C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for quasi-linear Schrödinger equations, Invent. Math., 158 (2004), 343-388. doi: 10.1007/s00222-004-0373-4.

[12]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbfR^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266. doi: 10.1007/BF00251502.

[13]

H. Lange, M. Poppenberg and H. Teismann, Nash-Moser methods for the solution of quasi-linear Schrödinger equations, Comm. Partial Differ. Equ., 24 (1999), 1399-1418. doi: 10.1080/03605309908821469.

[14]

R. S. Laugesen, Spectral Theory of Partial Differential Equations - Lecture Notes, preprint,, , (). 

[15]

E. Lenzmann, Uniqueness of ground states for pseudorelativistic Hartree equations, Anal. PDE, 2 (2009), 1-27. doi: 10.2140/apde.2009.2.1.

[16]

E. H. Lieb and M. Loss, Analysis,, $2^{nd}$ edition, ().  doi: 10.1090/gsm/014.

[17]

J.-Q. Liu and Z.-Q. Wang, Solitons solutions for quasi-linear Schrödinger equations, I, Proc. Am. Math. Soc., 131 (2003), 441-448. doi: 10.1090/S0002-9939-02-06783-7.

[18]

J.-Q. Liu, Y.-Q. Wang and Z.-Q. Wang, Soliton solutions for quasi-linear Schrödinger equations II, J. Differ. Equ., 187 (2003), 473-493. doi: 10.1016/S0022-0396(02)00064-5.

[19]

J.-Q. Liu, Y.-Q. Wang and Z.-Q. Wang, Solutions for quasi-linear Schrödinger equations via the Nehari method, Comm. Partial Differ. Equ., 29 (2004), 879-901. doi: 10.1081/PDE-120037335.

[20]

A. Pankov, Introduction to Spectral Theory of Schrödinger Operators, Vinnitsa State Pedagogical University, 2006.

[21]

M. Poppenberg, On the local well posedness of quasi-linear Schrödinger equations in arbitrary space dimension, J. Differ. Equ., 172 (2001), 83-115. doi: 10.1006/jdeq.2000.3853.

[22]

M. Poppenberg, K. Schmitt and Z.-Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differ. Equ., 14 (2002), 329-344. doi: 10.1007/s005260100105.

[23]

A. Selvitella, Uniqueness and nondegeneracy of the ground state for a quasilinear Schrödinger equation with a small parameter, Nonlinear Anal., 74 (2011), 1731-1737. doi: 10.1016/j.na.2010.10.045.

[24]

A. Selvitella, Nondegeneracy of the ground state for quasilinear Schrödinger equations, Calc. Var. Partial Differ. Equ., 53 (2015), 349-364. doi: 10.1007/s00526-014-0751-8.

[25]

W. P. Ziemer, Weakly Differentiable Functions, Graduate Texts in Mathematics, 120. Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.

show all references

References:
[1]

A. Ambrosetti and A. Malchiodi, Perturbation Methods and Semilinear Elliptic Problems on $\mathbfR^n$, Progress in Mathematics, 240. Birkhäuser Verlag, Basel, 2006.

[2]

S.-M. Chang, S. Gustafson, K. Nakanishi and T.-P. Tsai, Spectra of linearized operators for NLS solitary waves,, SIAM J. Math. Anal., 39 (): 1070.  doi: 10.1137/050648389.

[3]

M. Colin, On the local well-posedness of quasilinear Schrödinger equations in arbitrary space dimension, Comm. Partial Differ. Equ., 27 (2002), 325-354. doi: 10.1081/PDE-120002789.

[4]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Anal., 56 (2004), 213-226. doi: 10.1016/j.na.2003.09.008.

[5]

M. Colin, L. Jeanjean and M. Squassina, Stability and instability results for standing waves of quasi-linear Schrödinger equations, Nonlinearity, 23 (2010), 1353-1385. doi: 10.1088/0951-7715/23/6/006.

[6]

R. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $\mathbbR$, Acta Math., 210 (2013), 261-318. doi: 10.1007/s11511-013-0095-9.

[7]

R. Frank, E. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., (2015). doi: 10.1002/cpa.21591.

[8]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbfR^n$, in Mathematical analysis and applications, Part A, pp. 369-402, Adv. in Math. Suppl. Stud., 7a, Academic Press, New York-London, 1981.

[9]

Q. Han and F.-H. Lin, Elliptic Partial Differential Equations, Courant Lecture Notes in Mathematics, 1. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2011.

[10]

P. D. Hislop and I. M. Sigal, Introduction to Spectral Theory. With Applications to Schrödinger Operators, Applied Mathematical Sciences, 113. Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-0741-2.

[11]

C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for quasi-linear Schrödinger equations, Invent. Math., 158 (2004), 343-388. doi: 10.1007/s00222-004-0373-4.

[12]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbfR^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266. doi: 10.1007/BF00251502.

[13]

H. Lange, M. Poppenberg and H. Teismann, Nash-Moser methods for the solution of quasi-linear Schrödinger equations, Comm. Partial Differ. Equ., 24 (1999), 1399-1418. doi: 10.1080/03605309908821469.

[14]

R. S. Laugesen, Spectral Theory of Partial Differential Equations - Lecture Notes, preprint,, , (). 

[15]

E. Lenzmann, Uniqueness of ground states for pseudorelativistic Hartree equations, Anal. PDE, 2 (2009), 1-27. doi: 10.2140/apde.2009.2.1.

[16]

E. H. Lieb and M. Loss, Analysis,, $2^{nd}$ edition, ().  doi: 10.1090/gsm/014.

[17]

J.-Q. Liu and Z.-Q. Wang, Solitons solutions for quasi-linear Schrödinger equations, I, Proc. Am. Math. Soc., 131 (2003), 441-448. doi: 10.1090/S0002-9939-02-06783-7.

[18]

J.-Q. Liu, Y.-Q. Wang and Z.-Q. Wang, Soliton solutions for quasi-linear Schrödinger equations II, J. Differ. Equ., 187 (2003), 473-493. doi: 10.1016/S0022-0396(02)00064-5.

[19]

J.-Q. Liu, Y.-Q. Wang and Z.-Q. Wang, Solutions for quasi-linear Schrödinger equations via the Nehari method, Comm. Partial Differ. Equ., 29 (2004), 879-901. doi: 10.1081/PDE-120037335.

[20]

A. Pankov, Introduction to Spectral Theory of Schrödinger Operators, Vinnitsa State Pedagogical University, 2006.

[21]

M. Poppenberg, On the local well posedness of quasi-linear Schrödinger equations in arbitrary space dimension, J. Differ. Equ., 172 (2001), 83-115. doi: 10.1006/jdeq.2000.3853.

[22]

M. Poppenberg, K. Schmitt and Z.-Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differ. Equ., 14 (2002), 329-344. doi: 10.1007/s005260100105.

[23]

A. Selvitella, Uniqueness and nondegeneracy of the ground state for a quasilinear Schrödinger equation with a small parameter, Nonlinear Anal., 74 (2011), 1731-1737. doi: 10.1016/j.na.2010.10.045.

[24]

A. Selvitella, Nondegeneracy of the ground state for quasilinear Schrödinger equations, Calc. Var. Partial Differ. Equ., 53 (2015), 349-364. doi: 10.1007/s00526-014-0751-8.

[25]

W. P. Ziemer, Weakly Differentiable Functions, Graduate Texts in Mathematics, 120. Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.

[1]

Stefan Klus, Péter Koltai, Christof Schütte. On the numerical approximation of the Perron-Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (1) : 51-79. doi: 10.3934/jcd.2016003

[2]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure and Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[3]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure and Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[4]

Martin Lustig, Caglar Uyanik. Perron-Frobenius theory and frequency convergence for reducible substitutions. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 355-385. doi: 10.3934/dcds.2017015

[5]

Gary Froyland, Ognjen Stancevic. Escape rates and Perron-Frobenius operators: Open and closed dynamical systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 457-472. doi: 10.3934/dcdsb.2010.14.457

[6]

Marianne Akian, Stéphane Gaubert, Antoine Hochart. A game theory approach to the existence and uniqueness of nonlinear Perron-Frobenius eigenvectors. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 207-231. doi: 10.3934/dcds.2020009

[7]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[8]

Zupei Shen, Zhiqing Han, Qinqin Zhang. Ground states of nonlinear Schrödinger equations with fractional Laplacians. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2115-2125. doi: 10.3934/dcdss.2019136

[9]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[10]

Marco A. S. Souto, Sérgio H. M. Soares. Ground state solutions for quasilinear stationary Schrödinger equations with critical growth. Communications on Pure and Applied Analysis, 2013, 12 (1) : 99-116. doi: 10.3934/cpaa.2013.12.99

[11]

Wen Feng, Milena Stanislavova, Atanas Stefanov. On the spectral stability of ground states of semi-linear Schrödinger and Klein-Gordon equations with fractional dispersion. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1371-1385. doi: 10.3934/cpaa.2018067

[12]

Jianhua Chen, Xianhua Tang, Bitao Cheng. Existence of ground state solutions for a class of quasilinear Schrödinger equations with general critical nonlinearity. Communications on Pure and Applied Analysis, 2019, 18 (1) : 493-517. doi: 10.3934/cpaa.2019025

[13]

Yanfang Xue, Chunlei Tang. Ground state solutions for asymptotically periodic quasilinear Schrödinger equations with critical growth. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1121-1145. doi: 10.3934/cpaa.2018054

[14]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[15]

Chuangye Liu, Zhi-Qiang Wang. A complete classification of ground-states for a coupled nonlinear Schrödinger system. Communications on Pure and Applied Analysis, 2017, 16 (1) : 115-130. doi: 10.3934/cpaa.2017005

[16]

Alex H. Ardila. Stability of ground states for logarithmic Schrödinger equation with a $δ^{\prime}$-interaction. Evolution Equations and Control Theory, 2017, 6 (2) : 155-175. doi: 10.3934/eect.2017009

[17]

Rong Cheng, Jun Wang. Existence of ground states for Schrödinger-Poisson system with nonperiodic potentials. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021317

[18]

Yongpeng Chen, Yuxia Guo, Zhongwei Tang. Concentration of ground state solutions for quasilinear Schrödinger systems with critical exponents. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2693-2715. doi: 10.3934/cpaa.2019120

[19]

Stefan Klus, Christof Schütte. Towards tensor-based methods for the numerical approximation of the Perron--Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (2) : 139-161. doi: 10.3934/jcd.2016007

[20]

Yaotian Shen, Youjun Wang. A class of generalized quasilinear Schrödinger equations. Communications on Pure and Applied Analysis, 2016, 15 (3) : 853-870. doi: 10.3934/cpaa.2016.15.853

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (152)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]