November  2016, 36(11): 5971-5991. doi: 10.3934/dcds.2016062

Linear stability of the criss-cross orbit in the equal-mass three-body problem

1. 

School of Mathematics and Statistics, & Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun, 130024

2. 

Department of Mathematics, Brigham Young University, Provo, Utah 84602

3. 

School of Mathematics and System Science, Beihang University, Beijing 100191

Received  August 2015 Revised  May 2016 Published  August 2016

In this paper, we study the linear stability of the criss-cross orbit in the planar equal-mass three-body problem. In each period of the criss-cross orbit, the configurations of three masses are switching from a straight line to an isosceles triangle eight times. By analyzing its symmetry properties and variational characterization, we show that the criss-cross orbit is linearly stable via index theory.
Citation: Xiaojun Chang, Tiancheng Ouyang, Duokui Yan. Linear stability of the criss-cross orbit in the equal-mass three-body problem. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 5971-5991. doi: 10.3934/dcds.2016062
References:
[1]

V. Barutello, R. Jadanza and A. Portaluri, Linear instability of relative equilibria for n-body problems in the plane, J. Diff. Eqn., 257 (2014), 1773-1813. doi: 10.1016/j.jde.2014.05.017.

[2]

V. Barutello, R. Jadanza and A. Portaluri, Morse index and linear stability of the Lagrangian circular orbit in a three-body-type problem via index theory, Arch. Ration. Mech. Anal., 219 (2016), 387-444. doi: 10.1007/s00205-015-0898-2.

[3]

R. Broucke, On relative periodic solutions of the planar general three-body problem, Celestial Mech., 12 (1975), 439-462. doi: 10.1007/BF01595390.

[4]

S. Cappell, R. Lee and E. Miller, On the Maslov index, Comm. Pure Appl. Math., 47 (1994), 121-186. doi: 10.1002/cpa.3160470202.

[5]

A. Chenciner and R. Montgomery, A remarkable periodic solution of the three-body problem in the case of equal masses, Ann. of Math., 152 (2000), 881-901. doi: 10.2307/2661357.

[6]

A. Chenciner, Action minimizing solutions of the Newtonian n-body problem: from homology to symmetry, Proceedings of the International Congress of Mathematicians, Vol. III (Beijing 2002), 279-294, Higher Ed. Press, Beijing, 2002.

[7]

K.-C. Chen, T. Ouyang and Z. Xia, Action-minimizing periodic and quasi-periodic solutions in the n-body problem, Math. Res. Lett., 19 (2012), 483-497. doi: 10.4310/MRL.2012.v19.n2.a19.

[8]

K.-C. Chen, Existence and minimizing properties of retrograde orbits to the three-body problems with various choices of masses, Ann. of Math., 167 (2008), 325-348. doi: 10.4007/annals.2008.167.325.

[9]

K.-C. Chen and Y. Lin, On action-minimizing retrograde and prograde orbits of the three-body problem, Commun. Math. Phys., 291 (2009), 403-441. doi: 10.1007/s00220-009-0769-5.

[10]

D. Ferrario and S. Terracini, On the existence of collisionless equivalent minimizers for the classical n-body problem, Invent. Math., 155 (2004), 305-362. doi: 10.1007/s00222-003-0322-7.

[11]

M. Hénon, A family of periodic orbits of the planar three-body problem, and their atability, Celest. Mech. Dynam. Astron., 13 (1976), 267-285. doi: 10.1007/BF01228647.

[12]

X. Hu and S. Sun, Index and stability of symmetric periodic orbits in Hamiltonian system with application to Figure-eight orbit, Commun. Math. Phys., 290 (2009), 737-777. doi: 10.1007/s00220-009-0860-y.

[13]

X. Hu and S. Sun, Morse index and stability of elliptic Lagrangian solutions in the planar three-body problem, Adv. Math., 223 (2010), 98-119. doi: 10.1016/j.aim.2009.07.017.

[14]

X. Hu, Y. Long and S. Sun, Linear stability of elliptic Lagrangian solutions of the classical planar three-body problem via index theory, Arch. Ration. Mech. Anal., 213 (2014), 993-1045. doi: 10.1007/s00205-014-0749-6.

[15]

T. Kato, Perturbation theory for linear operators, Classics in Mathematics, Berlin-Heidelberg-New York, Spring-Verlag, 1995.

[16]

Y. Long, Index Theory For Symplectic Paths With Applications, Birkhäuser Verlag, Basel-Boston-Berlin, 2002. doi: 10.1007/978-3-0348-8175-3.

[17]

C. Marchal, How the method of minimization of action avoids singularities, Celestial Mech. Dynam. Astronom., 83 (2002), 325-353. doi: 10.1023/A:1020128408706.

[18]

C. Moore, Braids in classical gravity, Phys. Rev. Lett., 70 (1993), 3675-3679. doi: 10.1103/PhysRevLett.70.3675.

[19]

C. Moore, , http://www.santafe.edu/textasciitilde moore/gallery.html., (). 

[20]

C. Moore and M. Nauenberg, New periodic orbits for the n-body problem, J. of Comput. Nonlin. Dyn., 1 (2006), 307-311. doi: 10.1115/1.2338323.

[21]

T. Ouyang and Z. Xie, Star pentagon and many stable choreographic solutions of the Newtonian 4-body problem, Physica D, 307 (2015), 61-76. doi: 10.1016/j.physd.2015.05.015.

[22]

G. Roberts, Linear stability analysis of the figure-eight orbit in the three-body problem, Ergod. Th. & Dynam. Sys., 27 (2007), 1947-1963. doi: 10.1017/S0143385707000284.

[23]

C. Zhu, A generalized Morse index theorem, In Analysis, Geometry and Topology of Elliptic Operators, Hackensack, NJ: World Sci. Publ. (2006), 493-540.

[24]

G. Zhu and Y. Long, Linear stability of some symplectic matrices, Front. Math. China, 5 (2010), 361-368. doi: 10.1007/s11464-010-0008-6.

show all references

References:
[1]

V. Barutello, R. Jadanza and A. Portaluri, Linear instability of relative equilibria for n-body problems in the plane, J. Diff. Eqn., 257 (2014), 1773-1813. doi: 10.1016/j.jde.2014.05.017.

[2]

V. Barutello, R. Jadanza and A. Portaluri, Morse index and linear stability of the Lagrangian circular orbit in a three-body-type problem via index theory, Arch. Ration. Mech. Anal., 219 (2016), 387-444. doi: 10.1007/s00205-015-0898-2.

[3]

R. Broucke, On relative periodic solutions of the planar general three-body problem, Celestial Mech., 12 (1975), 439-462. doi: 10.1007/BF01595390.

[4]

S. Cappell, R. Lee and E. Miller, On the Maslov index, Comm. Pure Appl. Math., 47 (1994), 121-186. doi: 10.1002/cpa.3160470202.

[5]

A. Chenciner and R. Montgomery, A remarkable periodic solution of the three-body problem in the case of equal masses, Ann. of Math., 152 (2000), 881-901. doi: 10.2307/2661357.

[6]

A. Chenciner, Action minimizing solutions of the Newtonian n-body problem: from homology to symmetry, Proceedings of the International Congress of Mathematicians, Vol. III (Beijing 2002), 279-294, Higher Ed. Press, Beijing, 2002.

[7]

K.-C. Chen, T. Ouyang and Z. Xia, Action-minimizing periodic and quasi-periodic solutions in the n-body problem, Math. Res. Lett., 19 (2012), 483-497. doi: 10.4310/MRL.2012.v19.n2.a19.

[8]

K.-C. Chen, Existence and minimizing properties of retrograde orbits to the three-body problems with various choices of masses, Ann. of Math., 167 (2008), 325-348. doi: 10.4007/annals.2008.167.325.

[9]

K.-C. Chen and Y. Lin, On action-minimizing retrograde and prograde orbits of the three-body problem, Commun. Math. Phys., 291 (2009), 403-441. doi: 10.1007/s00220-009-0769-5.

[10]

D. Ferrario and S. Terracini, On the existence of collisionless equivalent minimizers for the classical n-body problem, Invent. Math., 155 (2004), 305-362. doi: 10.1007/s00222-003-0322-7.

[11]

M. Hénon, A family of periodic orbits of the planar three-body problem, and their atability, Celest. Mech. Dynam. Astron., 13 (1976), 267-285. doi: 10.1007/BF01228647.

[12]

X. Hu and S. Sun, Index and stability of symmetric periodic orbits in Hamiltonian system with application to Figure-eight orbit, Commun. Math. Phys., 290 (2009), 737-777. doi: 10.1007/s00220-009-0860-y.

[13]

X. Hu and S. Sun, Morse index and stability of elliptic Lagrangian solutions in the planar three-body problem, Adv. Math., 223 (2010), 98-119. doi: 10.1016/j.aim.2009.07.017.

[14]

X. Hu, Y. Long and S. Sun, Linear stability of elliptic Lagrangian solutions of the classical planar three-body problem via index theory, Arch. Ration. Mech. Anal., 213 (2014), 993-1045. doi: 10.1007/s00205-014-0749-6.

[15]

T. Kato, Perturbation theory for linear operators, Classics in Mathematics, Berlin-Heidelberg-New York, Spring-Verlag, 1995.

[16]

Y. Long, Index Theory For Symplectic Paths With Applications, Birkhäuser Verlag, Basel-Boston-Berlin, 2002. doi: 10.1007/978-3-0348-8175-3.

[17]

C. Marchal, How the method of minimization of action avoids singularities, Celestial Mech. Dynam. Astronom., 83 (2002), 325-353. doi: 10.1023/A:1020128408706.

[18]

C. Moore, Braids in classical gravity, Phys. Rev. Lett., 70 (1993), 3675-3679. doi: 10.1103/PhysRevLett.70.3675.

[19]

C. Moore, , http://www.santafe.edu/textasciitilde moore/gallery.html., (). 

[20]

C. Moore and M. Nauenberg, New periodic orbits for the n-body problem, J. of Comput. Nonlin. Dyn., 1 (2006), 307-311. doi: 10.1115/1.2338323.

[21]

T. Ouyang and Z. Xie, Star pentagon and many stable choreographic solutions of the Newtonian 4-body problem, Physica D, 307 (2015), 61-76. doi: 10.1016/j.physd.2015.05.015.

[22]

G. Roberts, Linear stability analysis of the figure-eight orbit in the three-body problem, Ergod. Th. & Dynam. Sys., 27 (2007), 1947-1963. doi: 10.1017/S0143385707000284.

[23]

C. Zhu, A generalized Morse index theorem, In Analysis, Geometry and Topology of Elliptic Operators, Hackensack, NJ: World Sci. Publ. (2006), 493-540.

[24]

G. Zhu and Y. Long, Linear stability of some symplectic matrices, Front. Math. China, 5 (2010), 361-368. doi: 10.1007/s11464-010-0008-6.

[1]

Luca Biasco, Luigi Chierchia. Exponential stability for the resonant D'Alembert model of celestial mechanics. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 569-594. doi: 10.3934/dcds.2005.12.569

[2]

Alessandra Celletti. Some KAM applications to Celestial Mechanics. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 533-544. doi: 10.3934/dcdss.2010.3.533

[3]

Rafael Ortega. Stability and index of periodic solutions of a nonlinear telegraph equation. Communications on Pure and Applied Analysis, 2005, 4 (4) : 823-837. doi: 10.3934/cpaa.2005.4.823

[4]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015

[5]

Carlota Rebelo, Alexandre Simões. Periodic linear motions with multiple collisions in a forced Kepler type problem. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3955-3975. doi: 10.3934/dcds.2018172

[6]

Mark A. Pinsky, Alexandr A. Zevin. Stability criteria for linear Hamiltonian systems with uncertain bounded periodic coefficients. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 243-250. doi: 10.3934/dcds.2005.12.243

[7]

Jifeng Chu, Pedro J. Torres, Feng Wang. Radial stability of periodic solutions of the Gylden-Meshcherskii-type problem. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1921-1932. doi: 10.3934/dcds.2015.35.1921

[8]

Hongbin Chen, Yi Li. Existence, uniqueness, and stability of periodic solutions of an equation of duffing type. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 793-807. doi: 10.3934/dcds.2007.18.793

[9]

M.I. Gil’. Existence and stability of periodic solutions of semilinear neutral type systems. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 809-820. doi: 10.3934/dcds.2001.7.809

[10]

Peter Giesl. Converse theorem on a global contraction metric for a periodic orbit. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5339-5363. doi: 10.3934/dcds.2019218

[11]

K. R. Rajagopal. The thermo-mechanics of rate-type fluids. Discrete and Continuous Dynamical Systems - S, 2012, 5 (6) : 1133-1145. doi: 10.3934/dcdss.2012.5.1133

[12]

Lennard Bakker, Skyler Simmons. Stability of the rhomboidal symmetric-mass orbit. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 1-23. doi: 10.3934/dcds.2015.35.1

[13]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure and Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[14]

Anete S. Cavalcanti. An existence proof of a symmetric periodic orbit in the octahedral six-body problem. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1903-1922. doi: 10.3934/dcds.2017080

[15]

Xueting Tian, Shirou Wang, Xiaodong Wang. Intermediate Lyapunov exponents for systems with periodic orbit gluing property. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1019-1032. doi: 10.3934/dcds.2019042

[16]

Peter Giesl, James McMichen. Determination of the basin of attraction of a periodic orbit in two dimensions using meshless collocation. Journal of Computational Dynamics, 2016, 3 (2) : 191-210. doi: 10.3934/jcd.2016010

[17]

Tatiane C. Batista, Juliano S. Gonschorowski, Fábio A. Tal. Density of the set of endomorphisms with a maximizing measure supported on a periodic orbit. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3315-3326. doi: 10.3934/dcds.2015.35.3315

[18]

Peter Giesl. On a matrix-valued PDE characterizing a contraction metric for a periodic orbit. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4839-4865. doi: 10.3934/dcdsb.2020315

[19]

Nanhee Kim. Uniqueness and Hölder type stability of continuation for the linear thermoelasticity system with residual stress. Evolution Equations and Control Theory, 2013, 2 (4) : 679-693. doi: 10.3934/eect.2013.2.679

[20]

Gerhard Keller. Stability index, uncertainty exponent, and thermodynamic formalism for intermingled basins of chaotic attractors. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : 313-334. doi: 10.3934/dcdss.2017015

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (107)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]