\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Periodic points of latitudinal maps of the $m$-dimensional sphere

Abstract Related Papers Cited by
  • Let $f$ be a smooth self-map of the $m$-dimensional sphere $S^m$. Under the assumption that $f$ preserves latitudinal foliations with the fibres $S^1$, we estimate from below the number of fixed points of the iterates of $f$. The paper generalizes the results obtained by Pugh and Shub and by Misiurewicz.
    Mathematics Subject Classification: Primary: 37C25, 37E30, 55M20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    I. K. Babenko, S. A. Bogatyi, The behavior of the index of periodic points under iterations of a mapping, Math. USSR Izv., 38 (1992), 1-26.

    [2]

    G. Graff and J. Jezierski, On the growth of the number of periodic points for smooth self-maps of a compact manifold, Proc. Amer. Math. Soc., 135 (2007), 3249-3254.doi: 10.1090/S0002-9939-07-08836-3.

    [3]

    L. Hernández-Corbato and F. R. Ruiz del Portal, Fixed point indices of planar continuous maps, Discrete Contin. Dyn. Syst., 35 (2015), 2979-2995.doi: 10.3934/dcds.2015.35.2979.

    [4]

    B. J. Jiang, Lectures on the Nielsen Fixed Point Theory, Contemp. Math. 14, Amer. Math. Soc., Providence, 1983.

    [5]

    V. Kaloshin, Generic diffeomorphisms with superexponential growth of number of periodic orbits, Comm. Math. Phys., 211 (2000), 253-271.doi: 10.1007/s002200050811.

    [6]

    N. G. Lloyd, Degree Theory, Cambridge Tracts in Mathematics, 73, Cambridge University Press, Cambridge-New York-Melbourne, 1978.

    [7]

    M. Misiurewicz, Periodic points of latitudinal maps, J. Fixed Point Theory Appl., 16 (2014), 149-158.doi: 10.1007/s11784-014-0195-y.

    [8]

    C. Pugh and M. Shub, Periodic points on the 2-sphere, Discrete Contin. Dynam. Sys., 34 (2014), 1171-1182.doi: 10.3934/dcds.2014.34.1171.

    [9]

    M. Shub, Alexander cocycles and dynamics, Asterisque, 51, Societé Math. de France, (1978), 395-413.

    [10]

    M. Shub, All, most, some differentiable dynamical systems, Proceedings of the International Congress of Mathematicians, Madrid, Spain, (2006), European Math. Society, 99-120.

    [11]

    M. Shub, Dynamical systems, filtration and entropy, Bull. Amer. Math. Soc., 80 (1974), 27-41.doi: 10.1090/S0002-9904-1974-13344-6.

    [12]

    M. Shub and P. Sullivan, A remark on the Lefschetz fixed point formula for differentiable maps, Topology, 13 (1974), 189-191.doi: 10.1016/0040-9383(74)90009-3.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(67) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return