November  2016, 36(11): 6201-6256. doi: 10.3934/dcds.2016071

Attractors of Hamilton nonlinear PDEs

1. 

Faculty of Mathematics of Vienna University, Oskar-Morgenstern-Platz 1, Vienna 1090, Austria

Received  October 2015 Revised  May 2016 Published  August 2016

This is a survey of results on long time behavior and attractors for Hamiltonian nonlinear partial differential equations, considering the global attraction to stationary states, stationary orbits, and solitons, the adiabatic effective dynamics of the solitons, and the asymptotic stability of the solitary manifolds. The corresponding numerical results and relations to quantum postulates are considered.
    This theory differs significantly from the theory of attractors of dissipative systems where the attraction to stationary states is due to an energy dissipation caused by a friction. For the Hamilton equations the friction and energy dissipation are absent, and the attraction is caused by radiation which brings the energy irrevocably to infinity.
Citation: Alexander Komech. Attractors of Hamilton nonlinear PDEs. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6201-6256. doi: 10.3934/dcds.2016071
References:
[1]

L. Landau, On the problem of turbulence, C. R. (Doklady) Acad. Sci. URSS (N.S.), 44 (1944), 311-314.

[2]

C. Foias, O. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, vol. 83 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511546754.

[3]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, vol. 25 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1988.

[4]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, vol. 840 of Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, 1981.

[5]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, vol. 25 of Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam, 1992, Translated and revised from the 1989 Russian original by Babin.

[6]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, vol. 49 of American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, RI, 2002.

[7]

N. Bohr, On the constitution of atoms and molecules, Phil. Mag., 26 (1913), 1-25, 476-502, 857-875.

[8]

A. Komech, Quantum Mechanics: Genesis and Achievements, Springer, Dordrecht, 2013. doi: 10.1007/978-94-007-5542-0.

[9]

J. J. Sakurai, Advanced Quantum Mechanics, Addison-Wesley, Reading, Massachusetts, 1967. doi: 10.1119/1.1974573.

[10]

W. Heisenberg, Der derzeitige Stand der nichtlinearen Spinortheorie der Elementarteilchen, Acta Phys. Austriaca, 14 (1961), 328-339.

[11]

W. Heisenberg, Introduction to the Unified Field Theory of Elementary Particles, Interscience, London, 1966. doi: 10.1007/978-3-642-61742-3_62.

[12]

F. Bonetto, J. L. Lebowitz and L. Rey-Bellet, Fourier's law: A challenge to theorists, in Mathematical physics 2000, Imp. Coll. Press, London, 2000, 128-150. doi: 10.1142/9781848160224_0008.

[13]

M. Gell-Mann, Symmetries of baryons and mesons, Phys. Rev. (2), 125 (1962), 1067-1084. doi: 10.1103/PhysRev.125.1067.

[14]

Y. Ne'eman, Unified interactions in the unitary gauge theory, Nuclear Phys., 30 (1962), 347-349. doi: 10.1016/0029-5582(62)90058-5.

[15]

R. K. Adair and E. C. Fowler, Strange Particles, Interscience Publishers John Wiley & Sons, New York-London, 1963.

[16]

F. Halzen and A. Martin, Quarks and Leptons: An Introductory Course in Modern Particle Physics, John Wiley & Sons, New York, 1984. doi: 10.1119/1.14146.

[17]

V. E. Barnes, P. L. Connolly, D. J. Crennell, B. B. Culwick, W. C. Delaney, W. B. Fowler, P. E. Hagerty, E. L. Hart, N. Horwitz, P. V. C. Hough, J. E. Jensen, J. K. Kopp, K. W. Lai, J. Leitner, J. L. Lloyd, G. W. London, T. W. Morris, Y. Oren, R. B. Palmer, A. G. Prodell, D. Radojičić, D. C. Rahm, C. R. Richardson, N. P. Samios, J. R. Sanford, R. P. Shutt, J. R. Smith, D. L. Stonehill, R. C. Strand, A. M. Thorndike, M. S. Webster, W. J. Willis and S. S. Yamamoto, Observation of a hyperon with strangeness minus three, Phys. Rev. Lett., 12 (1964), 204-206. doi: 10.1103/PhysRevLett.12.204.

[18]

E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 4 (1951), 213-231.

[19]

K. Jörgens, Das Anfangswertproblem im Grossen für eine Klasse nichtlinearer Wellengleichungen, Math. Z., 77 (1961), 295-308. doi: 10.1007/BF01180181.

[20]

J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod; Gauthier-Villars, Paris, 1969.

[21]

I. Segal, Quantization and dispersion for nonlinear relativistic equations, in Mathematical Theory of Elementary Particles (Proc. Conf., Dedham, Mass., 1965), M.I.T. Press, Cambridge, Mass., 1966, 79-108.

[22]

I. Segal, Dispersion for non-linear relativistic equations. II, Ann. Sci. École Norm. Sup. (4), 1 (1968), 459-497.

[23]

C. S. Morawetz, Time decay for the nonlinear Klein-Gordon equations, Proc. Roy. Soc. Ser. A, 306 (1968), 291-296. doi: 10.1098/rspa.1968.0151.

[24]

W. A. Strauss, Decay and asymptotics for $\square u=F(u)$, J. Functional Analysis, 2 (1968), 409-457. doi: 10.1016/0022-1236(68)90004-9.

[25]

C. S. Morawetz and W. A. Strauss, Decay and scattering of solutions of a nonlinear relativistic wave equation, Comm. Pure Appl. Math., 25 (1972), 1-31. doi: 10.1002/cpa.3160250103.

[26]

W. A. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal., 41 (1981), 110-133. doi: 10.1016/0022-1236(81)90063-X.

[27]

W. A. Strauss, Nonlinear scattering theory at low energy: sequel, J. Funct. Anal., 43 (1981), 281-293. doi: 10.1016/0022-1236(81)90019-7.

[28]

W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162. doi: 10.1007/BF01626517.

[29]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345. doi: 10.1007/BF00250555.

[30]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal., 82 (1983), 347-375. doi: 10.1007/BF00250556.

[31]

L. Lusternik and L. Schnirelmann, Méthodes topologiques dans les problèmes variationels, Hermann, Paris, 1934.

[32]

L. Lusternik and L. Schnirelmann, Topological methods in variational problems and their applications to differetial geometry of surfaces, Uspekhi Mat. Nauk, 2 (1947), 166-217.

[33]

M. J. Esteban, V. Georgiev and E. Séré, Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations, Calc. Var. Partial Differential Equations, 4 (1996), 265-281. doi: 10.1007/BF01254347.

[34]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., 74 (1987), 160-197. doi: 10.1016/0022-1236(87)90044-9.

[35]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. II, J. Funct. Anal., 94 (1990), 308-348. doi: 10.1016/0022-1236(90)90016-E.

[36]

H. Lamb, On a peculiarity of the wave-system due to the free vibrations of a nucleus in an extended medium, Proc. London Math. Soc., 32 (1900), 208-211. doi: 10.1112/plms/s1-32.1.208.

[37]

A. I. Komech, Stabilization of the interaction of a string with a nonlinear oscillator,, Vestnik Moskov. Univ. Ser. I Mat. Mekh., (): 35. 

[38]

A. I. Komech, On stabilization of string-nonlinear oscillator interaction, J. Math. Anal. Appl., 196 (1995), 384-409. doi: 10.1006/jmaa.1995.1415.

[39]

A. I. Komech, On the stabilization of string-oscillator interaction, Russian J. Math. Phys., 3 (1995), 227-247.

[40]

A. Komech, On transitions to stationary states in one-dimensional nonlinear wave equations, Arch. Ration. Mech. Anal., 149 (1999), 213-228. doi: 10.1007/s002050050173.

[41]

A. I. Komech, Attractors of nonlinear Hamiltonian one-dimensional wave equations, Uspekhi Mat. Nauk, 55 (2000), 45-98. doi: 10.1070/rm2000v055n01ABEH000249.

[42]

A. Komech, H. Spohn and M. Kunze, Long-time asymptotics for a classical particle interacting with a scalar wave field, Comm. Partial Differential Equations, 22 (1997), 307-335.

[43]

A. Komech and H. Spohn, Long-time asymptotics for the coupled Maxwell-Lorentz equations, Comm. Partial Differential Equations, 25 (2000), 559-584. doi: 10.1080/03605300008821524.

[44]

J. D. Jackson, Classical Electrodynamics, 2nd edition, John Wiley & Sons, Inc., New York-London-Sydney, 1975.

[45]

H. Spohn, Dynamics of Charged Particles and Their Radiation Field, Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511535178.

[46]

A. I. Komech and A. E. Merzon, Scattering in the nonlinear Lamb system, Phys. Lett. A, 373 (2009), 1005-1010. doi: 10.1016/j.physleta.2009.01.054.

[47]

A. I. Komech and A. E. Merzon, On asymptotic completeness for scattering in the nonlinear Lamb system, J. Math. Phys., 50 (2009), 023514, 10. doi: 10.1063/1.3081428.

[48]

A. I. Komech and A. E. Merzon, On asymptotic completeness of scattering in the nonlinear Lamb system, II, J. Math. Phys., 54 (2013), 012702, 9. doi: 10.1063/1.4773288.

[49]

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491. doi: 10.1137/0516034.

[50]

A. Soffer and M. I. Weinstein, Multichannel nonlinear scattering for nonintegrable equations, Comm. Math. Phys., 133 (1990), 119-146. doi: 10.1007/BF02096557.

[51]

A. Soffer and M. I. Weinstein, Multichannel nonlinear scattering for nonintegrable equations. II. The case of anisotropic potentials and data, J. Differential Equations, 98 (1992), 376-390. doi: 10.1016/0022-0396(92)90098-8.

[52]

C.-A. Pillet and C. E. Wayne, Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations, J. Differential Equations, 141 (1997), 310-326. doi: 10.1006/jdeq.1997.3345.

[53]

A. Soffer and M. I. Weinstein, Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math., 136 (1999), 9-74. doi: 10.1007/s002220050303.

[54]

A. Soffer and M. I. Weinstein, Selection of the ground state for nonlinear Schrödinger equations, Rev. Math. Phys., 16 (2004), 977-1071. doi: 10.1142/S0129055X04002175.

[55]

A. Soffer, Soliton dynamics and scattering, in International Congress of Mathematicians. Vol. III, Eur. Math. Soc., Zürich, 2006, 459-471.

[56]

V. S. Buslaev, A. I. Komech, E. A. Kopylova and D. Stuart, On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator, Comm. Partial Differential Equations, 33 (2008), 669-705. doi: 10.1080/03605300801970937.

[57]

A. Komech, E. Kopylova and D. Stuart, On asymptotic stability of solitons in a nonlinear Schrödinger equation, Commun. Pure Appl. Anal., 11 (2012), 1063-1079. doi: 10.3934/cpaa.2012.11.1063.

[58]

V. S. Buslaev and G. S. Perel'man, Scattering for the nonlinear Schrödinger equation: states that are close to a soliton, Algebra i Analiz, 4 (1992), 63-102.

[59]

V. S. Buslaev and G. S. Perel'man, On the stability of solitary waves for nonlinear Schrödinger equations, in Nonlinear evolution equations, vol. 164 of Amer. Math. Soc. Transl. Ser. 2, Amer. Math. Soc., Providence, RI, 1995, 75-98. doi: 10.1090/trans2/164/04.

[60]

V. S. Buslaev and C. Sulem, On asymptotic stability of solitary waves for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 419-475. doi: 10.1016/S0294-1449(02)00018-5.

[61]

R. L. Pego and M. I. Weinstein, Asymptotic stability of solitary waves, Comm. Math. Phys., 164 (1994), 305-349. doi: 10.1007/BF02101705.

[62]

J. R. Miller and M. I. Weinstein, Asymptotic stability of solitary waves for the regularized long-wave equation, Comm. Pure Appl. Math., 49 (1996), 399-441. doi: 10.1002/(SICI)1097-0312(199604)49:4<399::AID-CPA4>3.0.CO;2-7.

[63]

S. Cuccagna, Stabilization of solutions to nonlinear Schrödinger equations, Comm. Pure Appl. Math., 54 (2001), 1110-1145. doi: 10.1002/cpa.1018.

[64]

S. Cuccagna and T. Mizumachi, On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations, Comm. Math. Phys., 284 (2008), 51-77. doi: 10.1007/s00220-008-0605-3.

[65]

Y. Martel and F. Merle, Asymptotic stability of solitons of the subcritical gKdV equations revisited, Nonlinearity, 18 (2005), 55-80. doi: 10.1088/0951-7715/18/1/004.

[66]

H. Lindblad and T. Tao, Asymptotic decay for a one-dimensional nonlinear wave equation, Anal. PDE, 5 (2012), 411-422. doi: 10.2140/apde.2012.5.411.

[67]

V. Imaykin, A. Komech and B. Vainberg, On scattering of solitons for the Klein-Gordon equation coupled to a particle, Comm. Math. Phys., 268 (2006), 321-367. doi: 10.1007/s00220-006-0088-z.

[68]

V. Imaykin, A. Komech and H. Spohn, Scattering asymptotics for a charged particle coupled to the Maxwell field, J. Math. Phys., 52 (2011), 042701, 33. doi: 10.1063/1.3567957.

[69]

A. Komech and E. Kopylova, Scattering of solitons for the Schrödinger equation coupled to a particle, Russ. J. Math. Phys., 13 (2006), 158-187. doi: 10.1134/S106192080602004X.

[70]

A. I. Komech, E. A. Kopylova and H. Spohn, Scattering of solitons for Dirac equation coupled to a particle, J. Math. Anal. Appl., 383 (2011), 265-290. doi: 10.1016/j.jmaa.2011.05.037.

[71]

V. Imaykin, A. Komech and B. Vainberg, Scattering of solitons for coupled wave-particle equations, J. Math. Anal. Appl., 389 (2012), 713-740. doi: 10.1016/j.jmaa.2011.12.016.

[72]

V. M. Imaykin, Soliton asymptotics for systems of "field-particle'' type, Uspekhi Mat. Nauk, 68 (2013), 33-90.

[73]

A. Bensoussan, C. Iliine and A. Komech, Breathers for a relativistic nonlinear wave equation, Arch. Ration. Mech. Anal., 165 (2002), 317-345. doi: 10.1007/s00205-002-0226-5.

[74]

E. A. Kopylova and A. I. Komech, On asymptotic stability of moving kink for relativistic Ginzburg-Landau equation, Comm. Math. Phys., 302 (2011), 225-252. doi: 10.1007/s00220-010-1184-7.

[75]

E. Kopylova and A. I. Komech, On asymptotic stability of kink for relativistic Ginzburg-Landau equations, Arch. Ration. Mech. Anal., 202 (2011), 213-245. doi: 10.1007/s00205-011-0415-1.

[76]

E. A. Kopylova, Asymptotic stability of solitons for nonlinear hyperbolic equations, Uspekhi Mat. Nauk, 68 (2013), 91-144.

[77]

A. I. Komech, E. A. Kopylova and S. A. Kopylov, On nonlinear wave equations with parabolic potentials, J. Spectr. Theory, 3 (2013), 485-503. doi: 10.4171/JST/52.

[78]

A. Komech and E. Kopylova, On eigenfunction expansion of solutions to the Hamilton equations, J. Stat. Phys., 154 (2014), 503-521. doi: 10.1007/s10955-013-0846-1.

[79]

N. Boussaid and S. Cuccagna, On stability of standing waves of nonlinear Dirac equations, Comm. Partial Differential Equations, 37 (2012), 1001-1056. doi: 10.1080/03605302.2012.665973.

[80]

J. Fröhlich and Z. Gang, Emission of Cherenkov radiation as a mechanism for Hamiltonian friction, Adv. Math., 264 (2014), 183-235. doi: 10.1016/j.aim.2014.07.013.

[81]

Y. Martel, F. Merle and T.-P. Tsai, Stability and asymptotic stability in the energy space of the sum of $N$ solitons for subcritical gKdV equations, Comm. Math. Phys., 231 (2002), 347-373. doi: 10.1007/s00220-002-0723-2.

[82]

G. Perelman, Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations, Comm. Partial Differential Equations, 29 (2004), 1051-1095. doi: 10.1081/PDE-200033754.

[83]

I. Rodnianski, W. Schlag and A. Soffer, Asymptotic stability of N-soliton states of NLS,, ArXiv Mathematics e-prints, (). 

[84]

I. Rodnianski, W. Schlag and A. Soffer, Dispersive analysis of charge transfer models, Comm. Pure Appl. Math., 58 (2005), 149-216. doi: 10.1002/cpa.20066.

[85]

Y. Martel, Asymptotic $N$-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Amer. J. Math., 127 (2005), 1103-1140, URL http://muse.jhu.edu/journals/american_journal_of_mathematics/v127/127.5martel.pdf. doi: 10.1353/ajm.2005.0033.

[86]

M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978.

[87]

I. M. Sigal, Nonlinear wave and Schrödinger equations. I. Instability of periodic and quasiperiodic solutions, Comm. Math. Phys., 153 (1993), 297-320, URL http://projecteuclid.org/euclid.cmp/1104252682.

[88]

M. Merkli and I. M. Sigal, A time-dependent theory of quantum resonances, Comm. Math. Phys., 201 (1999), 549-576. doi: 10.1007/s002200050568.

[89]

T.-P. Tsai and H.-T. Yau, Classification of asymptotic profiles for nonlinear Schrödinger equations with small initial data, Adv. Theor. Math. Phys., 6 (2002), 107-139. doi: 10.4310/ATMP.2002.v6.n1.a2.

[90]

T.-P. Tsai and H.-T. Yau, Asymptotic dynamics of nonlinear Schrödinger equations: resonance-dominated and dispersion-dominated solutions, Comm. Pure Appl. Math., 55 (2002), 153-216. doi: 10.1002/cpa.3012.

[91]

T.-P. Tsai, Asymptotic dynamics of nonlinear Schrödinger equations with many bound states, J. Differential Equations, 192 (2003), 225-282. doi: 10.1016/S0022-0396(03)00041-X.

[92]

D. Bambusi and S. Cuccagna, On dispersion of small energy solutions to the nonlinear Klein Gordon equation with a potential, Amer. J. Math., 133 (2011), 1421-1468. doi: 10.1353/ajm.2011.0034.

[93]

S. Cuccagna, The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states, Comm. Math. Phys., 305 (2011), 279-331. doi: 10.1007/s00220-011-1265-2.

[94]

T. Harada and H. Maeda, Stability criterion for self-similar solutions with a scalar field and those with a stiff fluid in general relativity, Classical Quantum Gravity, 21 (2004), 371-389. doi: 10.1088/0264-9381/21/2/003.

[95]

M. Dafermos and I. Rodnianski, A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds, Invent. Math., 185 (2011), 467-559. doi: 10.1007/s00222-010-0309-0.

[96]

D. Tataru, Local decay of waves on asymptotically flat stationary space-times, Amer. J. Math., 135 (2013), 361-401. doi: 10.1353/ajm.2013.0012.

[97]

L. Andersson and P. Blue, Uniform energy bound and asymptotics for the Maxwell field on a slowly rotating Kerr black hole exterior, J. Hyperbolic Differ. Equ., 12 (2015), 689-743. doi: 10.1142/S0219891615500204.

[98]

R. Donninger, W. Schlag and A. Soffer, On pointwise decay of linear waves on a Schwarzschild black hole background, Comm. Math. Phys., 309 (2012), 51-86. doi: 10.1007/s00220-011-1393-8.

[99]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675. doi: 10.1007/s00222-006-0011-4.

[100]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., 201 (2008), 147-212. doi: 10.1007/s11511-008-0031-6.

[101]

C. E. Kenig and F. Merle, Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications, Amer. J. Math., 133 (2011), 1029-1065. doi: 10.1353/ajm.2011.0029.

[102]

T. Duyckaerts, C. Kenig and F. Merle, Profiles of bounded radial solutions of the focusing, energy-critical wave equation, Geom. Funct. Anal., 22 (2012), 639-698. doi: 10.1007/s00039-012-0174-7.

[103]

T. Duyckaerts, C. Kenig and F. Merle, Scattering for radial, bounded solutions of focusing supercritical wave equations,, Int. Math. Res. Not. IMRN, (): 224. 

[104]

J. Krieger, K. Nakanishi and W. Schlag, Center-stable manifold of the ground state in the energy space for the critical wave equation, Math. Ann., 361 (2015), 1-50. doi: 10.1007/s00208-014-1059-x.

[105]

T. Duyckaerts, C. Kenig and F. Merle, Concentration-compactness and universal profiles for the non-radial energy critical wave equation, Nonlinear Anal., 138 (2016), 44-82. doi: 10.1016/j.na.2015.12.027.

[106]

K. Nakanishi and W. Schlag, Invariant Manifolds and Dispersive Hamiltonian Evolution Equations, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2011. doi: 10.4171/095.

[107]

J. Krieger and W. Schlag, Concentration Compactness for Critical Wave Maps, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, 2012. doi: 10.4171/106.

[108]

C. E. Kenig, A. Lawrie and W. Schlag, Relaxation of wave maps exterior to a ball to harmonic maps for all data, Geom. Funct. Anal., 24 (2014), 610-647. doi: 10.1007/s00039-014-0262-y.

[109]

C. Kenig, A. Lawrie, B. Liu and W. Schlag, Stable soliton resolution for exterior wave maps in all equivariance classes, Adv. Math., 285 (2015), 235-300. doi: 10.1016/j.aim.2015.08.007.

[110]

P. D. Lax, C. S. Morawetz and R. S. Phillips, Exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle, Comm. Pure Appl. Math., 16 (1963), 477-486. doi: 10.1002/cpa.3160160407.

[111]

S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), 151-218.

[112]

A. Jensen and T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., 46 (1979), 583-611.

[113]

A. Komech and E. Kopylova, Dispersion Decay and Scattering Theory, John Wiley & Sons, Inc., Hoboken, NJ, 2012. doi: 10.1002/9781118382868.

[114]

E. A. Kopylova, Dispersion estimates for the Schrödinger and Klein-Gordon equations, Uspekhi Mat. Nauk, 65 (2010), 97-144. doi: 10.1070/RM2010v065n01ABEH004662.

[115]

A. I. Komech and E. A. Kopylova, Dispersive decay for the magnetic Schrödinger equation, J. Funct. Anal., 264 (2013), 735-751. doi: 10.1016/j.jfa.2012.12.001.

[116]

A. I. Komech, E. A. Kopylova and M. Kunze, Dispersive estimates for 1D discrete Schrödinger and Klein-Gordon equations, Appl. Anal., 85 (2006), 1487-1508. doi: 10.1080/00036810601074321.

[117]

A. I. Komech, E. A. Kopylova and B. R. Vainberg, On dispersive properties of discrete 2D Schrödinger and Klein-Gordon equations, J. Funct. Anal., 254 (2008), 2227-2254. doi: 10.1016/j.jfa.2008.01.005.

[118]

E. A. Kopylova, Dispersive estimates for discrete Schrödinger and Klein-Gordon equations, Algebra i Analiz, 21 (2009), 87-113. doi: 10.1090/S1061-0022-2010-01115-4.

[119]

N. Boussaid, Stable directions for small nonlinear Dirac standing waves, Comm. Math. Phys., 268 (2006), 757-817. doi: 10.1007/s00220-006-0112-3.

[120]

I. Rodnianski and W. Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math., 155 (2004), 451-513. doi: 10.1007/s00222-003-0325-4.

[121]

M. Beceanu and M. Goldberg, Schrödinger dispersive estimates for a scaling-critical class of potentials, Comm. Math. Phys., 314 (2012), 471-481. doi: 10.1007/s00220-012-1435-x.

[122]

M. B. Erdoğan, M. Goldberg and W. R. Green, Dispersive estimates for four dimensional Schrödinger and wave equations with obstructions at zero energy, Comm. Partial Differential Equations, 39 (2014), 1936-1964. doi: 10.1080/03605302.2014.921928.

[123]

M. Goldberg and W. R. Green, Dispersive estimates for higher dimensional Schrödinger operators with threshold eigenvalues I: The odd dimensional case, J. Funct. Anal., 269 (2015), 633-682. doi: 10.1016/j.jfa.2015.04.004.

[124]

B. Marshall, W. Strauss and S. Wainger, $L^p-L^q$ estimates for the Klein-Gordon equation, J. Math. Pures Appl. (9), 59 (1980), 417-440.

[125]

M. Beals and W. Strauss, $L^p$ estimates for the wave equation with a potential, Comm. Partial Differential Equations, 18 (1993), 1365-1397. doi: 10.1080/03605309308820977.

[126]

J.-L. Journé, A. Soffer and C. D. Sogge, Decay estimates for Schrödinger operators, Comm. Pure Appl. Math., 44 (1991), 573-604. doi: 10.1002/cpa.3160440504.

[127]

K. Yajima, Dispersive estimates for Schrödinger equations with threshold resonance and eigenvalue, Comm. Math. Phys., 259 (2005), 475-509. doi: 10.1007/s00220-005-1375-9.

[128]

P. D'Ancona, L. Fanelli, L. Vega and N. Visciglia, Endpoint Strichartz estimates for the magnetic Schrödinger equation, J. Funct. Anal., 258 (2010), 3227-3240. doi: 10.1016/j.jfa.2010.02.007.

[129]

P. D'Ancona, Kato smoothing and Strichartz estimates for wave equations with magnetic potentials, Comm. Math. Phys., 335 (2015), 1-16. doi: 10.1007/s00220-014-2169-8.

[130]

M. Beceanu and M. Goldberg, Strichartz estimates and maximal operators for the wave equation in $\mathbbR^3$, J. Funct. Anal., 266 (2014), 1476-1510. doi: 10.1016/j.jfa.2013.11.010.

[131]

A. I. Komech, On attractor of a singular nonlinear $U(1)$-invariant Klein-Gordon equation, in Progress in analysis, Vol. I, II (Berlin, 2001), World Sci. Publ., River Edge, NJ, 2003, 599-611.

[132]

A. I. Komech and A. A. Komech, On the global attraction to solitary waves for the Klein-Gordon equation coupled to a nonlinear oscillator, C. R. Math. Acad. Sci. Paris, 343 (2006), 111-114. doi: 10.1016/j.crma.2006.06.009.

[133]

A. Komech and A. Komech, Global attractor for a nonlinear oscillator coupled to the Klein-Gordon field, Arch. Ration. Mech. Anal., 185 (2007), 105-142. doi: 10.1007/s00205-006-0039-z.

[134]

A. Komech and A. Komech, On global attraction to solitary waves for the Klein-Gordon field coupled to several nonlinear oscillators, J. Math. Pures Appl. (9), 93 (2010), 91-111. doi: 10.1016/j.matpur.2009.08.011.

[135]

A. I. Komech and A. A. Komech, Global attraction to solitary waves in models based on the Klein-Gordon equation, SIGMA Symmetry Integrability Geom. Methods Appl., 4 (2008), Paper 010, 23. doi: 10.3842/SIGMA.2008.010.

[136]

A. Komech and A. Komech, Global attraction to solitary waves for Klein-Gordon equation with mean field interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 855-868. doi: 10.1016/j.anihpc.2008.03.005.

[137]

A. Komech and A. Komech, Global attraction to solitary waves for a nonlinear Dirac equation with mean field interaction, SIAM J. Math. Anal., 42 (2010), 2944-2964. doi: 10.1137/090772125.

[138]

A. Comech, On global attraction to solitary waves. Klein-Gordon equation with mean field interaction at several points, J. Differential Equations, 252 (2012), 5390-5413. doi: 10.1016/j.jde.2012.02.001.

[139]

A. Comech, Weak attractor of the Klein-Gordon field in discrete space-time interacting with a nonlinear oscillator, Discrete Contin. Dyn. Syst., 33 (2013), 2711-2755. doi: 10.3934/dcds.2013.33.2711.

[140]

A. A. Komech and A. I. Komech, A variant of the Titchmarsh convolution theorem for distributions on the circle, Funktsional. Anal. i Prilozhen., 47 (2013), 26-32. doi: 10.1007/s10688-013-0003-2.

[141]

A. I. Komech, Linear partial differential equations with constant coefficients [ MR1175407 (93f:35003)], in Partial differential equations, II, vol. 31 of Encyclopaedia Math. Sci., Springer, Berlin, 1994, 121-255. doi: 10.1007/978-3-642-57876-2_2.

[142]

G. I. Gaudry, Quasimeasures and operators commuting with convolution, Pacific J. Math., 18 (1966), 461-476. doi: 10.2140/pjm.1966.18.461.

[143]

E. C. Titchmarsh, The Zeros of Certain Integral Functions, Proc. London Math. Soc., S2-25 (1926), 283. doi: 10.1112/plms/s2-25.1.283.

[144]

B. Y. Levin, Lectures on Entire Functions, vol. 150 of Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, 1996, In collaboration with and with a preface by Yu. Lyubarskii, M. Sodin and V. Tkachenko, Translated from the Russian manuscript by Tkachenko.

[145]

L. Hörmander, The Analysis of Linear Partial Differential Operators. I, vol. 256 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2nd edition, Springer-Verlag, Berlin, 1990, Distribution theory and Fourier analysis. doi: 10.1007/978-3-642-61497-2.

[146]

O. A. Ladyženskaya, On the principle of limit amplitude, Uspekhi Mat. Nauk, 12 (1957), 161-164.

[147]

C. S. Morawetz, The limiting amplitude principle, Comm. Pure Appl. Math., 15 (1962), 349-361. doi: 10.1002/cpa.3160150303.

[148]

L. Lewin, Advanced Theory of Waveguides, Iliffe and Sons, Ltd., London, 1951.

[149]

W. Eckhaus and A. van Harten, The Inverse Scattering Transformation and the Theory of Solitons, vol. 50 of North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam-New York, 1981, An introduction.

[150]

A. Komech and H. Spohn, Soliton-like asymptotics for a classical particle interacting with a scalar wave field, Nonlinear Anal., 33 (1998), 13-24. doi: 10.1016/S0362-546X(97)00538-5.

[151]

V. Imaykin, A. Komech and N. Mauser, Soliton-type asymptotics for the coupled Maxwell-Lorentz equations, Ann. Henri Poincaré, 5 (2004), 1117-1135. doi: 10.1007/s00023-004-0193-5.

[152]

V. Imaykin, A. Komech and H. Spohn, Scattering theory for a particle coupled to a scalar field, Discrete Contin. Dyn. Syst., 10 (2004), 387-396, Partial differential equations and applications. doi: 10.3934/dcds.2004.10.387.

[153]

V. Imaykin, A. Komech and P. A. Markowich, Scattering of solitons of the Klein-Gordon equation coupled to a classical particle, J. Math. Phys., 44 (2003), 1202-1217. doi: 10.1063/1.1539900.

[154]

V. Imaykin, A. Komech and H. Spohn, Soliton-type asymptotics and scattering for a charge coupled to the Maxwell field, Russ. J. Math. Phys., 9 (2002), 428-436.

[155]

V. Imaykin, A. Komech and H. Spohn, Rotating charge coupled to the Maxwell field: scattering theory and adiabatic limit, Monatsh. Math., 142 (2004), 143-156. doi: 10.1007/s00605-004-0232-9.

[156]

A. I. Komech, N. J. Mauser and A. P. Vinnichenko, Attraction to solitons in relativistic nonlinear wave equations, Russ. J. Math. Phys., 11 (2004), 289-307.

[157]

T. V. Dudnikova, A. I. Komech and H. Spohn, Energy-momentum relation for solitary waves of relativistic wave equations, Russ. J. Math. Phys., 9 (2002), 153-160.

[158]

G. L. Lamb Jr., Elements of Soliton Theory, John Wiley & Sons, Inc., New York, 1980, Pure and Applied Mathematics, A Wiley-Interscience Publication.

[159]

M. Abraham, Prinzipien der Dynamik des Elektrons, Physikal. Zeitschr., 4 (1902), 57-63. doi: 10.1002/andp.19023150105.

[160]

M. Abraham, Theorie der Elektrizität, Bd.2: Elektromagnetische Theorie der Strahlung, Teubner, Leipzig, 1905.

[161]

A. Einstein, Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?, Annalen der Physik, 18 (1905), 639-643. doi: 10.1002/andp.19053231314.

[162]

L. Houllevigue, L'Évolution des Sciences, A. Collin, Paris, 1908.

[163]

R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures on Physics. Vol. 2: Mainly Electromagnetism and Matter, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1964.

[164]

A. Komech, M. Kunze and H. Spohn, Effective dynamics for a mechanical particle coupled to a wave field, Comm. Math. Phys., 203 (1999), 1-19. doi: 10.1007/s002200050023.

[165]

M. Kunze and H. Spohn, Adiabatic limit for the Maxwell-Lorentz equations, Ann. Henri Poincaré, 1 (2000), 625-653. doi: 10.1007/PL00001010.

[166]

J. Fröhlich, T.-P. Tsai and H.-T. Yau, On the point-particle (Newtonian) limit of the non-linear Hartree equation, Comm. Math. Phys., 225 (2002), 223-274. doi: 10.1007/s002200100579.

[167]

J. Fröhlich, S. Gustafson, B. L. G. Jonsson and I. M. Sigal, Solitary wave dynamics in an external potential, Comm. Math. Phys., 250 (2004), 613-642. doi: 10.1007/s00220-004-1128-1.

[168]

D. Stuart, Existence and Newtonian limit of nonlinear bound states in the Einstein-Dirac system, J. Math. Phys., 51 (2010), 032501, 13. doi: 10.1063/1.3294085.

[169]

S. Demoulini and D. Stuart, Adiabatic limit and the slow motion of vortices in a Chern-Simons-Schrödinger system, Comm. Math. Phys., 290 (2009), 597-632. doi: 10.1007/s00220-009-0844-y.

[170]

E. Long and D. Stuart, Effective dynamics for solitons in the nonlinear Klein-Gordon-Maxwell system and the Lorentz force law, Rev. Math. Phys., 21 (2009), 459-510. doi: 10.1142/S0129055X09003669.

[171]

V. Bach, T. Chen, J. Faupin, J. Fröhlich and I. M. Sigal, Effective dynamics of an electron coupled to an external potential in non-relativistic QED, Ann. Henri Poincaré, 14 (2013), 1573-1597. doi: 10.1007/s00023-012-0222-8.

show all references

References:
[1]

L. Landau, On the problem of turbulence, C. R. (Doklady) Acad. Sci. URSS (N.S.), 44 (1944), 311-314.

[2]

C. Foias, O. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, vol. 83 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511546754.

[3]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, vol. 25 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1988.

[4]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, vol. 840 of Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, 1981.

[5]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, vol. 25 of Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam, 1992, Translated and revised from the 1989 Russian original by Babin.

[6]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, vol. 49 of American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, RI, 2002.

[7]

N. Bohr, On the constitution of atoms and molecules, Phil. Mag., 26 (1913), 1-25, 476-502, 857-875.

[8]

A. Komech, Quantum Mechanics: Genesis and Achievements, Springer, Dordrecht, 2013. doi: 10.1007/978-94-007-5542-0.

[9]

J. J. Sakurai, Advanced Quantum Mechanics, Addison-Wesley, Reading, Massachusetts, 1967. doi: 10.1119/1.1974573.

[10]

W. Heisenberg, Der derzeitige Stand der nichtlinearen Spinortheorie der Elementarteilchen, Acta Phys. Austriaca, 14 (1961), 328-339.

[11]

W. Heisenberg, Introduction to the Unified Field Theory of Elementary Particles, Interscience, London, 1966. doi: 10.1007/978-3-642-61742-3_62.

[12]

F. Bonetto, J. L. Lebowitz and L. Rey-Bellet, Fourier's law: A challenge to theorists, in Mathematical physics 2000, Imp. Coll. Press, London, 2000, 128-150. doi: 10.1142/9781848160224_0008.

[13]

M. Gell-Mann, Symmetries of baryons and mesons, Phys. Rev. (2), 125 (1962), 1067-1084. doi: 10.1103/PhysRev.125.1067.

[14]

Y. Ne'eman, Unified interactions in the unitary gauge theory, Nuclear Phys., 30 (1962), 347-349. doi: 10.1016/0029-5582(62)90058-5.

[15]

R. K. Adair and E. C. Fowler, Strange Particles, Interscience Publishers John Wiley & Sons, New York-London, 1963.

[16]

F. Halzen and A. Martin, Quarks and Leptons: An Introductory Course in Modern Particle Physics, John Wiley & Sons, New York, 1984. doi: 10.1119/1.14146.

[17]

V. E. Barnes, P. L. Connolly, D. J. Crennell, B. B. Culwick, W. C. Delaney, W. B. Fowler, P. E. Hagerty, E. L. Hart, N. Horwitz, P. V. C. Hough, J. E. Jensen, J. K. Kopp, K. W. Lai, J. Leitner, J. L. Lloyd, G. W. London, T. W. Morris, Y. Oren, R. B. Palmer, A. G. Prodell, D. Radojičić, D. C. Rahm, C. R. Richardson, N. P. Samios, J. R. Sanford, R. P. Shutt, J. R. Smith, D. L. Stonehill, R. C. Strand, A. M. Thorndike, M. S. Webster, W. J. Willis and S. S. Yamamoto, Observation of a hyperon with strangeness minus three, Phys. Rev. Lett., 12 (1964), 204-206. doi: 10.1103/PhysRevLett.12.204.

[18]

E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 4 (1951), 213-231.

[19]

K. Jörgens, Das Anfangswertproblem im Grossen für eine Klasse nichtlinearer Wellengleichungen, Math. Z., 77 (1961), 295-308. doi: 10.1007/BF01180181.

[20]

J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod; Gauthier-Villars, Paris, 1969.

[21]

I. Segal, Quantization and dispersion for nonlinear relativistic equations, in Mathematical Theory of Elementary Particles (Proc. Conf., Dedham, Mass., 1965), M.I.T. Press, Cambridge, Mass., 1966, 79-108.

[22]

I. Segal, Dispersion for non-linear relativistic equations. II, Ann. Sci. École Norm. Sup. (4), 1 (1968), 459-497.

[23]

C. S. Morawetz, Time decay for the nonlinear Klein-Gordon equations, Proc. Roy. Soc. Ser. A, 306 (1968), 291-296. doi: 10.1098/rspa.1968.0151.

[24]

W. A. Strauss, Decay and asymptotics for $\square u=F(u)$, J. Functional Analysis, 2 (1968), 409-457. doi: 10.1016/0022-1236(68)90004-9.

[25]

C. S. Morawetz and W. A. Strauss, Decay and scattering of solutions of a nonlinear relativistic wave equation, Comm. Pure Appl. Math., 25 (1972), 1-31. doi: 10.1002/cpa.3160250103.

[26]

W. A. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal., 41 (1981), 110-133. doi: 10.1016/0022-1236(81)90063-X.

[27]

W. A. Strauss, Nonlinear scattering theory at low energy: sequel, J. Funct. Anal., 43 (1981), 281-293. doi: 10.1016/0022-1236(81)90019-7.

[28]

W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162. doi: 10.1007/BF01626517.

[29]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345. doi: 10.1007/BF00250555.

[30]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal., 82 (1983), 347-375. doi: 10.1007/BF00250556.

[31]

L. Lusternik and L. Schnirelmann, Méthodes topologiques dans les problèmes variationels, Hermann, Paris, 1934.

[32]

L. Lusternik and L. Schnirelmann, Topological methods in variational problems and their applications to differetial geometry of surfaces, Uspekhi Mat. Nauk, 2 (1947), 166-217.

[33]

M. J. Esteban, V. Georgiev and E. Séré, Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations, Calc. Var. Partial Differential Equations, 4 (1996), 265-281. doi: 10.1007/BF01254347.

[34]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., 74 (1987), 160-197. doi: 10.1016/0022-1236(87)90044-9.

[35]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. II, J. Funct. Anal., 94 (1990), 308-348. doi: 10.1016/0022-1236(90)90016-E.

[36]

H. Lamb, On a peculiarity of the wave-system due to the free vibrations of a nucleus in an extended medium, Proc. London Math. Soc., 32 (1900), 208-211. doi: 10.1112/plms/s1-32.1.208.

[37]

A. I. Komech, Stabilization of the interaction of a string with a nonlinear oscillator,, Vestnik Moskov. Univ. Ser. I Mat. Mekh., (): 35. 

[38]

A. I. Komech, On stabilization of string-nonlinear oscillator interaction, J. Math. Anal. Appl., 196 (1995), 384-409. doi: 10.1006/jmaa.1995.1415.

[39]

A. I. Komech, On the stabilization of string-oscillator interaction, Russian J. Math. Phys., 3 (1995), 227-247.

[40]

A. Komech, On transitions to stationary states in one-dimensional nonlinear wave equations, Arch. Ration. Mech. Anal., 149 (1999), 213-228. doi: 10.1007/s002050050173.

[41]

A. I. Komech, Attractors of nonlinear Hamiltonian one-dimensional wave equations, Uspekhi Mat. Nauk, 55 (2000), 45-98. doi: 10.1070/rm2000v055n01ABEH000249.

[42]

A. Komech, H. Spohn and M. Kunze, Long-time asymptotics for a classical particle interacting with a scalar wave field, Comm. Partial Differential Equations, 22 (1997), 307-335.

[43]

A. Komech and H. Spohn, Long-time asymptotics for the coupled Maxwell-Lorentz equations, Comm. Partial Differential Equations, 25 (2000), 559-584. doi: 10.1080/03605300008821524.

[44]

J. D. Jackson, Classical Electrodynamics, 2nd edition, John Wiley & Sons, Inc., New York-London-Sydney, 1975.

[45]

H. Spohn, Dynamics of Charged Particles and Their Radiation Field, Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511535178.

[46]

A. I. Komech and A. E. Merzon, Scattering in the nonlinear Lamb system, Phys. Lett. A, 373 (2009), 1005-1010. doi: 10.1016/j.physleta.2009.01.054.

[47]

A. I. Komech and A. E. Merzon, On asymptotic completeness for scattering in the nonlinear Lamb system, J. Math. Phys., 50 (2009), 023514, 10. doi: 10.1063/1.3081428.

[48]

A. I. Komech and A. E. Merzon, On asymptotic completeness of scattering in the nonlinear Lamb system, II, J. Math. Phys., 54 (2013), 012702, 9. doi: 10.1063/1.4773288.

[49]

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491. doi: 10.1137/0516034.

[50]

A. Soffer and M. I. Weinstein, Multichannel nonlinear scattering for nonintegrable equations, Comm. Math. Phys., 133 (1990), 119-146. doi: 10.1007/BF02096557.

[51]

A. Soffer and M. I. Weinstein, Multichannel nonlinear scattering for nonintegrable equations. II. The case of anisotropic potentials and data, J. Differential Equations, 98 (1992), 376-390. doi: 10.1016/0022-0396(92)90098-8.

[52]

C.-A. Pillet and C. E. Wayne, Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations, J. Differential Equations, 141 (1997), 310-326. doi: 10.1006/jdeq.1997.3345.

[53]

A. Soffer and M. I. Weinstein, Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math., 136 (1999), 9-74. doi: 10.1007/s002220050303.

[54]

A. Soffer and M. I. Weinstein, Selection of the ground state for nonlinear Schrödinger equations, Rev. Math. Phys., 16 (2004), 977-1071. doi: 10.1142/S0129055X04002175.

[55]

A. Soffer, Soliton dynamics and scattering, in International Congress of Mathematicians. Vol. III, Eur. Math. Soc., Zürich, 2006, 459-471.

[56]

V. S. Buslaev, A. I. Komech, E. A. Kopylova and D. Stuart, On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator, Comm. Partial Differential Equations, 33 (2008), 669-705. doi: 10.1080/03605300801970937.

[57]

A. Komech, E. Kopylova and D. Stuart, On asymptotic stability of solitons in a nonlinear Schrödinger equation, Commun. Pure Appl. Anal., 11 (2012), 1063-1079. doi: 10.3934/cpaa.2012.11.1063.

[58]

V. S. Buslaev and G. S. Perel'man, Scattering for the nonlinear Schrödinger equation: states that are close to a soliton, Algebra i Analiz, 4 (1992), 63-102.

[59]

V. S. Buslaev and G. S. Perel'man, On the stability of solitary waves for nonlinear Schrödinger equations, in Nonlinear evolution equations, vol. 164 of Amer. Math. Soc. Transl. Ser. 2, Amer. Math. Soc., Providence, RI, 1995, 75-98. doi: 10.1090/trans2/164/04.

[60]

V. S. Buslaev and C. Sulem, On asymptotic stability of solitary waves for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 419-475. doi: 10.1016/S0294-1449(02)00018-5.

[61]

R. L. Pego and M. I. Weinstein, Asymptotic stability of solitary waves, Comm. Math. Phys., 164 (1994), 305-349. doi: 10.1007/BF02101705.

[62]

J. R. Miller and M. I. Weinstein, Asymptotic stability of solitary waves for the regularized long-wave equation, Comm. Pure Appl. Math., 49 (1996), 399-441. doi: 10.1002/(SICI)1097-0312(199604)49:4<399::AID-CPA4>3.0.CO;2-7.

[63]

S. Cuccagna, Stabilization of solutions to nonlinear Schrödinger equations, Comm. Pure Appl. Math., 54 (2001), 1110-1145. doi: 10.1002/cpa.1018.

[64]

S. Cuccagna and T. Mizumachi, On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations, Comm. Math. Phys., 284 (2008), 51-77. doi: 10.1007/s00220-008-0605-3.

[65]

Y. Martel and F. Merle, Asymptotic stability of solitons of the subcritical gKdV equations revisited, Nonlinearity, 18 (2005), 55-80. doi: 10.1088/0951-7715/18/1/004.

[66]

H. Lindblad and T. Tao, Asymptotic decay for a one-dimensional nonlinear wave equation, Anal. PDE, 5 (2012), 411-422. doi: 10.2140/apde.2012.5.411.

[67]

V. Imaykin, A. Komech and B. Vainberg, On scattering of solitons for the Klein-Gordon equation coupled to a particle, Comm. Math. Phys., 268 (2006), 321-367. doi: 10.1007/s00220-006-0088-z.

[68]

V. Imaykin, A. Komech and H. Spohn, Scattering asymptotics for a charged particle coupled to the Maxwell field, J. Math. Phys., 52 (2011), 042701, 33. doi: 10.1063/1.3567957.

[69]

A. Komech and E. Kopylova, Scattering of solitons for the Schrödinger equation coupled to a particle, Russ. J. Math. Phys., 13 (2006), 158-187. doi: 10.1134/S106192080602004X.

[70]

A. I. Komech, E. A. Kopylova and H. Spohn, Scattering of solitons for Dirac equation coupled to a particle, J. Math. Anal. Appl., 383 (2011), 265-290. doi: 10.1016/j.jmaa.2011.05.037.

[71]

V. Imaykin, A. Komech and B. Vainberg, Scattering of solitons for coupled wave-particle equations, J. Math. Anal. Appl., 389 (2012), 713-740. doi: 10.1016/j.jmaa.2011.12.016.

[72]

V. M. Imaykin, Soliton asymptotics for systems of "field-particle'' type, Uspekhi Mat. Nauk, 68 (2013), 33-90.

[73]

A. Bensoussan, C. Iliine and A. Komech, Breathers for a relativistic nonlinear wave equation, Arch. Ration. Mech. Anal., 165 (2002), 317-345. doi: 10.1007/s00205-002-0226-5.

[74]

E. A. Kopylova and A. I. Komech, On asymptotic stability of moving kink for relativistic Ginzburg-Landau equation, Comm. Math. Phys., 302 (2011), 225-252. doi: 10.1007/s00220-010-1184-7.

[75]

E. Kopylova and A. I. Komech, On asymptotic stability of kink for relativistic Ginzburg-Landau equations, Arch. Ration. Mech. Anal., 202 (2011), 213-245. doi: 10.1007/s00205-011-0415-1.

[76]

E. A. Kopylova, Asymptotic stability of solitons for nonlinear hyperbolic equations, Uspekhi Mat. Nauk, 68 (2013), 91-144.

[77]

A. I. Komech, E. A. Kopylova and S. A. Kopylov, On nonlinear wave equations with parabolic potentials, J. Spectr. Theory, 3 (2013), 485-503. doi: 10.4171/JST/52.

[78]

A. Komech and E. Kopylova, On eigenfunction expansion of solutions to the Hamilton equations, J. Stat. Phys., 154 (2014), 503-521. doi: 10.1007/s10955-013-0846-1.

[79]

N. Boussaid and S. Cuccagna, On stability of standing waves of nonlinear Dirac equations, Comm. Partial Differential Equations, 37 (2012), 1001-1056. doi: 10.1080/03605302.2012.665973.

[80]

J. Fröhlich and Z. Gang, Emission of Cherenkov radiation as a mechanism for Hamiltonian friction, Adv. Math., 264 (2014), 183-235. doi: 10.1016/j.aim.2014.07.013.

[81]

Y. Martel, F. Merle and T.-P. Tsai, Stability and asymptotic stability in the energy space of the sum of $N$ solitons for subcritical gKdV equations, Comm. Math. Phys., 231 (2002), 347-373. doi: 10.1007/s00220-002-0723-2.

[82]

G. Perelman, Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations, Comm. Partial Differential Equations, 29 (2004), 1051-1095. doi: 10.1081/PDE-200033754.

[83]

I. Rodnianski, W. Schlag and A. Soffer, Asymptotic stability of N-soliton states of NLS,, ArXiv Mathematics e-prints, (). 

[84]

I. Rodnianski, W. Schlag and A. Soffer, Dispersive analysis of charge transfer models, Comm. Pure Appl. Math., 58 (2005), 149-216. doi: 10.1002/cpa.20066.

[85]

Y. Martel, Asymptotic $N$-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Amer. J. Math., 127 (2005), 1103-1140, URL http://muse.jhu.edu/journals/american_journal_of_mathematics/v127/127.5martel.pdf. doi: 10.1353/ajm.2005.0033.

[86]

M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978.

[87]

I. M. Sigal, Nonlinear wave and Schrödinger equations. I. Instability of periodic and quasiperiodic solutions, Comm. Math. Phys., 153 (1993), 297-320, URL http://projecteuclid.org/euclid.cmp/1104252682.

[88]

M. Merkli and I. M. Sigal, A time-dependent theory of quantum resonances, Comm. Math. Phys., 201 (1999), 549-576. doi: 10.1007/s002200050568.

[89]

T.-P. Tsai and H.-T. Yau, Classification of asymptotic profiles for nonlinear Schrödinger equations with small initial data, Adv. Theor. Math. Phys., 6 (2002), 107-139. doi: 10.4310/ATMP.2002.v6.n1.a2.

[90]

T.-P. Tsai and H.-T. Yau, Asymptotic dynamics of nonlinear Schrödinger equations: resonance-dominated and dispersion-dominated solutions, Comm. Pure Appl. Math., 55 (2002), 153-216. doi: 10.1002/cpa.3012.

[91]

T.-P. Tsai, Asymptotic dynamics of nonlinear Schrödinger equations with many bound states, J. Differential Equations, 192 (2003), 225-282. doi: 10.1016/S0022-0396(03)00041-X.

[92]

D. Bambusi and S. Cuccagna, On dispersion of small energy solutions to the nonlinear Klein Gordon equation with a potential, Amer. J. Math., 133 (2011), 1421-1468. doi: 10.1353/ajm.2011.0034.

[93]

S. Cuccagna, The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states, Comm. Math. Phys., 305 (2011), 279-331. doi: 10.1007/s00220-011-1265-2.

[94]

T. Harada and H. Maeda, Stability criterion for self-similar solutions with a scalar field and those with a stiff fluid in general relativity, Classical Quantum Gravity, 21 (2004), 371-389. doi: 10.1088/0264-9381/21/2/003.

[95]

M. Dafermos and I. Rodnianski, A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds, Invent. Math., 185 (2011), 467-559. doi: 10.1007/s00222-010-0309-0.

[96]

D. Tataru, Local decay of waves on asymptotically flat stationary space-times, Amer. J. Math., 135 (2013), 361-401. doi: 10.1353/ajm.2013.0012.

[97]

L. Andersson and P. Blue, Uniform energy bound and asymptotics for the Maxwell field on a slowly rotating Kerr black hole exterior, J. Hyperbolic Differ. Equ., 12 (2015), 689-743. doi: 10.1142/S0219891615500204.

[98]

R. Donninger, W. Schlag and A. Soffer, On pointwise decay of linear waves on a Schwarzschild black hole background, Comm. Math. Phys., 309 (2012), 51-86. doi: 10.1007/s00220-011-1393-8.

[99]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675. doi: 10.1007/s00222-006-0011-4.

[100]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., 201 (2008), 147-212. doi: 10.1007/s11511-008-0031-6.

[101]

C. E. Kenig and F. Merle, Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications, Amer. J. Math., 133 (2011), 1029-1065. doi: 10.1353/ajm.2011.0029.

[102]

T. Duyckaerts, C. Kenig and F. Merle, Profiles of bounded radial solutions of the focusing, energy-critical wave equation, Geom. Funct. Anal., 22 (2012), 639-698. doi: 10.1007/s00039-012-0174-7.

[103]

T. Duyckaerts, C. Kenig and F. Merle, Scattering for radial, bounded solutions of focusing supercritical wave equations,, Int. Math. Res. Not. IMRN, (): 224. 

[104]

J. Krieger, K. Nakanishi and W. Schlag, Center-stable manifold of the ground state in the energy space for the critical wave equation, Math. Ann., 361 (2015), 1-50. doi: 10.1007/s00208-014-1059-x.

[105]

T. Duyckaerts, C. Kenig and F. Merle, Concentration-compactness and universal profiles for the non-radial energy critical wave equation, Nonlinear Anal., 138 (2016), 44-82. doi: 10.1016/j.na.2015.12.027.

[106]

K. Nakanishi and W. Schlag, Invariant Manifolds and Dispersive Hamiltonian Evolution Equations, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2011. doi: 10.4171/095.

[107]

J. Krieger and W. Schlag, Concentration Compactness for Critical Wave Maps, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, 2012. doi: 10.4171/106.

[108]

C. E. Kenig, A. Lawrie and W. Schlag, Relaxation of wave maps exterior to a ball to harmonic maps for all data, Geom. Funct. Anal., 24 (2014), 610-647. doi: 10.1007/s00039-014-0262-y.

[109]

C. Kenig, A. Lawrie, B. Liu and W. Schlag, Stable soliton resolution for exterior wave maps in all equivariance classes, Adv. Math., 285 (2015), 235-300. doi: 10.1016/j.aim.2015.08.007.

[110]

P. D. Lax, C. S. Morawetz and R. S. Phillips, Exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle, Comm. Pure Appl. Math., 16 (1963), 477-486. doi: 10.1002/cpa.3160160407.

[111]

S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), 151-218.

[112]

A. Jensen and T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., 46 (1979), 583-611.

[113]

A. Komech and E. Kopylova, Dispersion Decay and Scattering Theory, John Wiley & Sons, Inc., Hoboken, NJ, 2012. doi: 10.1002/9781118382868.

[114]

E. A. Kopylova, Dispersion estimates for the Schrödinger and Klein-Gordon equations, Uspekhi Mat. Nauk, 65 (2010), 97-144. doi: 10.1070/RM2010v065n01ABEH004662.

[115]

A. I. Komech and E. A. Kopylova, Dispersive decay for the magnetic Schrödinger equation, J. Funct. Anal., 264 (2013), 735-751. doi: 10.1016/j.jfa.2012.12.001.

[116]

A. I. Komech, E. A. Kopylova and M. Kunze, Dispersive estimates for 1D discrete Schrödinger and Klein-Gordon equations, Appl. Anal., 85 (2006), 1487-1508. doi: 10.1080/00036810601074321.

[117]

A. I. Komech, E. A. Kopylova and B. R. Vainberg, On dispersive properties of discrete 2D Schrödinger and Klein-Gordon equations, J. Funct. Anal., 254 (2008), 2227-2254. doi: 10.1016/j.jfa.2008.01.005.

[118]

E. A. Kopylova, Dispersive estimates for discrete Schrödinger and Klein-Gordon equations, Algebra i Analiz, 21 (2009), 87-113. doi: 10.1090/S1061-0022-2010-01115-4.

[119]

N. Boussaid, Stable directions for small nonlinear Dirac standing waves, Comm. Math. Phys., 268 (2006), 757-817. doi: 10.1007/s00220-006-0112-3.

[120]

I. Rodnianski and W. Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math., 155 (2004), 451-513. doi: 10.1007/s00222-003-0325-4.

[121]

M. Beceanu and M. Goldberg, Schrödinger dispersive estimates for a scaling-critical class of potentials, Comm. Math. Phys., 314 (2012), 471-481. doi: 10.1007/s00220-012-1435-x.

[122]

M. B. Erdoğan, M. Goldberg and W. R. Green, Dispersive estimates for four dimensional Schrödinger and wave equations with obstructions at zero energy, Comm. Partial Differential Equations, 39 (2014), 1936-1964. doi: 10.1080/03605302.2014.921928.

[123]

M. Goldberg and W. R. Green, Dispersive estimates for higher dimensional Schrödinger operators with threshold eigenvalues I: The odd dimensional case, J. Funct. Anal., 269 (2015), 633-682. doi: 10.1016/j.jfa.2015.04.004.

[124]

B. Marshall, W. Strauss and S. Wainger, $L^p-L^q$ estimates for the Klein-Gordon equation, J. Math. Pures Appl. (9), 59 (1980), 417-440.

[125]

M. Beals and W. Strauss, $L^p$ estimates for the wave equation with a potential, Comm. Partial Differential Equations, 18 (1993), 1365-1397. doi: 10.1080/03605309308820977.

[126]

J.-L. Journé, A. Soffer and C. D. Sogge, Decay estimates for Schrödinger operators, Comm. Pure Appl. Math., 44 (1991), 573-604. doi: 10.1002/cpa.3160440504.

[127]

K. Yajima, Dispersive estimates for Schrödinger equations with threshold resonance and eigenvalue, Comm. Math. Phys., 259 (2005), 475-509. doi: 10.1007/s00220-005-1375-9.

[128]

P. D'Ancona, L. Fanelli, L. Vega and N. Visciglia, Endpoint Strichartz estimates for the magnetic Schrödinger equation, J. Funct. Anal., 258 (2010), 3227-3240. doi: 10.1016/j.jfa.2010.02.007.

[129]

P. D'Ancona, Kato smoothing and Strichartz estimates for wave equations with magnetic potentials, Comm. Math. Phys., 335 (2015), 1-16. doi: 10.1007/s00220-014-2169-8.

[130]

M. Beceanu and M. Goldberg, Strichartz estimates and maximal operators for the wave equation in $\mathbbR^3$, J. Funct. Anal., 266 (2014), 1476-1510. doi: 10.1016/j.jfa.2013.11.010.

[131]

A. I. Komech, On attractor of a singular nonlinear $U(1)$-invariant Klein-Gordon equation, in Progress in analysis, Vol. I, II (Berlin, 2001), World Sci. Publ., River Edge, NJ, 2003, 599-611.

[132]

A. I. Komech and A. A. Komech, On the global attraction to solitary waves for the Klein-Gordon equation coupled to a nonlinear oscillator, C. R. Math. Acad. Sci. Paris, 343 (2006), 111-114. doi: 10.1016/j.crma.2006.06.009.

[133]

A. Komech and A. Komech, Global attractor for a nonlinear oscillator coupled to the Klein-Gordon field, Arch. Ration. Mech. Anal., 185 (2007), 105-142. doi: 10.1007/s00205-006-0039-z.

[134]

A. Komech and A. Komech, On global attraction to solitary waves for the Klein-Gordon field coupled to several nonlinear oscillators, J. Math. Pures Appl. (9), 93 (2010), 91-111. doi: 10.1016/j.matpur.2009.08.011.

[135]

A. I. Komech and A. A. Komech, Global attraction to solitary waves in models based on the Klein-Gordon equation, SIGMA Symmetry Integrability Geom. Methods Appl., 4 (2008), Paper 010, 23. doi: 10.3842/SIGMA.2008.010.

[136]

A. Komech and A. Komech, Global attraction to solitary waves for Klein-Gordon equation with mean field interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 855-868. doi: 10.1016/j.anihpc.2008.03.005.

[137]

A. Komech and A. Komech, Global attraction to solitary waves for a nonlinear Dirac equation with mean field interaction, SIAM J. Math. Anal., 42 (2010), 2944-2964. doi: 10.1137/090772125.

[138]

A. Comech, On global attraction to solitary waves. Klein-Gordon equation with mean field interaction at several points, J. Differential Equations, 252 (2012), 5390-5413. doi: 10.1016/j.jde.2012.02.001.

[139]

A. Comech, Weak attractor of the Klein-Gordon field in discrete space-time interacting with a nonlinear oscillator, Discrete Contin. Dyn. Syst., 33 (2013), 2711-2755. doi: 10.3934/dcds.2013.33.2711.

[140]

A. A. Komech and A. I. Komech, A variant of the Titchmarsh convolution theorem for distributions on the circle, Funktsional. Anal. i Prilozhen., 47 (2013), 26-32. doi: 10.1007/s10688-013-0003-2.

[141]

A. I. Komech, Linear partial differential equations with constant coefficients [ MR1175407 (93f:35003)], in Partial differential equations, II, vol. 31 of Encyclopaedia Math. Sci., Springer, Berlin, 1994, 121-255. doi: 10.1007/978-3-642-57876-2_2.

[142]

G. I. Gaudry, Quasimeasures and operators commuting with convolution, Pacific J. Math., 18 (1966), 461-476. doi: 10.2140/pjm.1966.18.461.

[143]

E. C. Titchmarsh, The Zeros of Certain Integral Functions, Proc. London Math. Soc., S2-25 (1926), 283. doi: 10.1112/plms/s2-25.1.283.

[144]

B. Y. Levin, Lectures on Entire Functions, vol. 150 of Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, 1996, In collaboration with and with a preface by Yu. Lyubarskii, M. Sodin and V. Tkachenko, Translated from the Russian manuscript by Tkachenko.

[145]

L. Hörmander, The Analysis of Linear Partial Differential Operators. I, vol. 256 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2nd edition, Springer-Verlag, Berlin, 1990, Distribution theory and Fourier analysis. doi: 10.1007/978-3-642-61497-2.

[146]

O. A. Ladyženskaya, On the principle of limit amplitude, Uspekhi Mat. Nauk, 12 (1957), 161-164.

[147]

C. S. Morawetz, The limiting amplitude principle, Comm. Pure Appl. Math., 15 (1962), 349-361. doi: 10.1002/cpa.3160150303.

[148]

L. Lewin, Advanced Theory of Waveguides, Iliffe and Sons, Ltd., London, 1951.

[149]

W. Eckhaus and A. van Harten, The Inverse Scattering Transformation and the Theory of Solitons, vol. 50 of North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam-New York, 1981, An introduction.

[150]

A. Komech and H. Spohn, Soliton-like asymptotics for a classical particle interacting with a scalar wave field, Nonlinear Anal., 33 (1998), 13-24. doi: 10.1016/S0362-546X(97)00538-5.

[151]

V. Imaykin, A. Komech and N. Mauser, Soliton-type asymptotics for the coupled Maxwell-Lorentz equations, Ann. Henri Poincaré, 5 (2004), 1117-1135. doi: 10.1007/s00023-004-0193-5.

[152]

V. Imaykin, A. Komech and H. Spohn, Scattering theory for a particle coupled to a scalar field, Discrete Contin. Dyn. Syst., 10 (2004), 387-396, Partial differential equations and applications. doi: 10.3934/dcds.2004.10.387.

[153]

V. Imaykin, A. Komech and P. A. Markowich, Scattering of solitons of the Klein-Gordon equation coupled to a classical particle, J. Math. Phys., 44 (2003), 1202-1217. doi: 10.1063/1.1539900.

[154]

V. Imaykin, A. Komech and H. Spohn, Soliton-type asymptotics and scattering for a charge coupled to the Maxwell field, Russ. J. Math. Phys., 9 (2002), 428-436.

[155]

V. Imaykin, A. Komech and H. Spohn, Rotating charge coupled to the Maxwell field: scattering theory and adiabatic limit, Monatsh. Math., 142 (2004), 143-156. doi: 10.1007/s00605-004-0232-9.

[156]

A. I. Komech, N. J. Mauser and A. P. Vinnichenko, Attraction to solitons in relativistic nonlinear wave equations, Russ. J. Math. Phys., 11 (2004), 289-307.

[157]

T. V. Dudnikova, A. I. Komech and H. Spohn, Energy-momentum relation for solitary waves of relativistic wave equations, Russ. J. Math. Phys., 9 (2002), 153-160.

[158]

G. L. Lamb Jr., Elements of Soliton Theory, John Wiley & Sons, Inc., New York, 1980, Pure and Applied Mathematics, A Wiley-Interscience Publication.

[159]

M. Abraham, Prinzipien der Dynamik des Elektrons, Physikal. Zeitschr., 4 (1902), 57-63. doi: 10.1002/andp.19023150105.

[160]

M. Abraham, Theorie der Elektrizität, Bd.2: Elektromagnetische Theorie der Strahlung, Teubner, Leipzig, 1905.

[161]

A. Einstein, Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?, Annalen der Physik, 18 (1905), 639-643. doi: 10.1002/andp.19053231314.

[162]

L. Houllevigue, L'Évolution des Sciences, A. Collin, Paris, 1908.

[163]

R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures on Physics. Vol. 2: Mainly Electromagnetism and Matter, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1964.

[164]

A. Komech, M. Kunze and H. Spohn, Effective dynamics for a mechanical particle coupled to a wave field, Comm. Math. Phys., 203 (1999), 1-19. doi: 10.1007/s002200050023.

[165]

M. Kunze and H. Spohn, Adiabatic limit for the Maxwell-Lorentz equations, Ann. Henri Poincaré, 1 (2000), 625-653. doi: 10.1007/PL00001010.

[166]

J. Fröhlich, T.-P. Tsai and H.-T. Yau, On the point-particle (Newtonian) limit of the non-linear Hartree equation, Comm. Math. Phys., 225 (2002), 223-274. doi: 10.1007/s002200100579.

[167]

J. Fröhlich, S. Gustafson, B. L. G. Jonsson and I. M. Sigal, Solitary wave dynamics in an external potential, Comm. Math. Phys., 250 (2004), 613-642. doi: 10.1007/s00220-004-1128-1.

[168]

D. Stuart, Existence and Newtonian limit of nonlinear bound states in the Einstein-Dirac system, J. Math. Phys., 51 (2010), 032501, 13. doi: 10.1063/1.3294085.

[169]

S. Demoulini and D. Stuart, Adiabatic limit and the slow motion of vortices in a Chern-Simons-Schrödinger system, Comm. Math. Phys., 290 (2009), 597-632. doi: 10.1007/s00220-009-0844-y.

[170]

E. Long and D. Stuart, Effective dynamics for solitons in the nonlinear Klein-Gordon-Maxwell system and the Lorentz force law, Rev. Math. Phys., 21 (2009), 459-510. doi: 10.1142/S0129055X09003669.

[171]

V. Bach, T. Chen, J. Faupin, J. Fröhlich and I. M. Sigal, Effective dynamics of an electron coupled to an external potential in non-relativistic QED, Ann. Henri Poincaré, 14 (2013), 1573-1597. doi: 10.1007/s00023-012-0222-8.

[1]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[2]

Sébastien Guisset. Angular moments models for rarefied gas dynamics. Numerical comparisons with kinetic and Navier-Stokes equations. Kinetic and Related Models, 2020, 13 (4) : 739-758. doi: 10.3934/krm.2020025

[3]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[4]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[5]

Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727

[6]

Y. Efendiev, B. Popov. On homogenization of nonlinear hyperbolic equations. Communications on Pure and Applied Analysis, 2005, 4 (2) : 295-309. doi: 10.3934/cpaa.2005.4.295

[7]

Andrey V. Kremnev, Alexander S. Kuleshov. Nonlinear dynamics and stability of the skateboard. Discrete and Continuous Dynamical Systems - S, 2010, 3 (1) : 85-103. doi: 10.3934/dcdss.2010.3.85

[8]

V. V. Chepyzhov, A. Miranville. Trajectory and global attractors of dissipative hyperbolic equations with memory. Communications on Pure and Applied Analysis, 2005, 4 (1) : 115-142. doi: 10.3934/cpaa.2005.4.115

[9]

M. D. Todorov, C. I. Christov. Collision dynamics of circularly polarized solitons in nonintegrable coupled nonlinear Schrödinger system. Conference Publications, 2009, 2009 (Special) : 780-789. doi: 10.3934/proc.2009.2009.780

[10]

Zhong Wang. Stability of Hasimoto solitons in energy space for a fourth order nonlinear Schrödinger type equation. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4091-4108. doi: 10.3934/dcds.2017174

[11]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[12]

M. D. Todorov. Polarization dynamics during takeover collisions of solitons in systems of coupled nonlinears Schödinger equations. Conference Publications, 2011, 2011 (Special) : 1385-1394. doi: 10.3934/proc.2011.2011.1385

[13]

Kenta Nakamura, Tohru Nakamura, Shuichi Kawashima. Asymptotic stability of rarefaction waves for a hyperbolic system of balance laws. Kinetic and Related Models, 2019, 12 (4) : 923-944. doi: 10.3934/krm.2019035

[14]

Philippe Jouan, Said Naciri. Asymptotic stability of uniformly bounded nonlinear switched systems. Mathematical Control and Related Fields, 2013, 3 (3) : 323-345. doi: 10.3934/mcrf.2013.3.323

[15]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[16]

Zhijian Yang, Pengyan Ding, Xiaobin Liu. Attractors and their stability on Boussinesq type equations with gentle dissipation. Communications on Pure and Applied Analysis, 2019, 18 (2) : 911-930. doi: 10.3934/cpaa.2019044

[17]

A. Pankov. Gap solitons in periodic discrete nonlinear Schrödinger equations II: A generalized Nehari manifold approach. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 419-430. doi: 10.3934/dcds.2007.19.419

[18]

Monica Conti, Elsa M. Marchini, V. Pata. Global attractors for nonlinear viscoelastic equations with memory. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1893-1913. doi: 10.3934/cpaa.2016021

[19]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2037-2053. doi: 10.3934/dcdsb.2020365

[20]

S. Raynor, G. Staffilani. Low regularity stability of solitons for the KDV equation. Communications on Pure and Applied Analysis, 2003, 2 (3) : 277-296. doi: 10.3934/cpaa.2003.2.277

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (225)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]